
New York University Abu Dhabi

ENGR-UH 4020 Senior Design Capstone Project II

Spring 2020

Design of a Haptic-Audio-Visual
Tele-Dental Training Simulation

Final Report

10 May 2020

Ken Iiyoshi (ki573@nyu.edu)
Mahrukh Tauseef (mt3312@nyu.edu)
Ruth Gebremedhin (rgg282@nyu.edu)

Capstone Mentor:
Dr. Mohamad Eid

Capstone Instructors:
Dr. Pradeep George

Dr. Ramesh Jagannathan

Abstract

Over the past two decades, high-speed communication technologies have revo-
lutionized applications of Tactile Internet (TI) by allowing low-latency data transfer.
This has led to the emergence of haptic-based medical simulations that have numer-
ous technical and ethical advantages in medical training. Since dental training is a
highly haptic task, tactile internet has the potential to improve the current dental
training techniques by allowing communication of motor skills as haptic media. This
project designs and implements a detailed, virtual-reality based simulation of a peri-
odontal procedure using haptic technology and a realistic 3D model of the oral cavity.
A communication system that allows low-latency transmission of haptic and audio-
visual data over a network was developed. The local-hosted communication network
performed with minimal overhead; an average delay of 0.62 ms and jitter of 0.53 ms for
haptic data, and round trip time of less than 30 ms for audio-visual data. This system
enables effective supervised training over a physical distance and is more interactive
than commonly used non-haptic computer simulations.

1 Project Management
Management methods such as Work Breakdown Structure (WBS), Design Structure

Matrix (DSM), Critical Path Method (CPM), and Gantt Chart were used to plan and
schedule the design and implementation process of this project. Each method is discussed
in the sections below.

1.1 Work Breakdown Structure (WBS)

A work breakdown structure assists project planning by dividing projects into a series
of tasks and sub-tasks [27]. See Table 1 below for the WBS of this project.

1

Table 1: Project Work Breakdown Structure

Haptic-Audio-Visual Tele-Dental Training Project Duration Planned Dates

Primary tasks Sub-tasks (days) start End

0.1 Begin Project 1 9/1/19 9/1/19

1.0 Determine dental needs 1.1 Weekly meetings with dentists 220 11/1/19 5/10/20

1.2 Review regulatory requirements 20 10/2/19 10/22/19

1.3 Research alternative solutions 20 10/2/19 10/22/19

1.4 Create a hierarchical list of dental needs 40 11/1/19 12/8/19

1.5 Revise problem statement 40 11/1/19 12/8/19

2.0 Generate Concepts 2.1 Functionally decompose the project 21 9/14/19 10/2/19

2.2 Research for code 49 9/1/19 10/14/19

2.3 Generate concepts 28 10/14/19 11/8/19

2.4 Select promising concept(s) 28 11/1/19 11/29/19

3.0 Begin Detailed Design 3.1 Perform detailed analysis of concepts 28 10/13/19 11/7/19

3.2 Perform simulations 28 11/7/19 12/8/19

3.3 Material selection/availability 7 12/1/19 12/8/19

3.4 Component selection/availability 7 12/1/19 12/8/19

3.5 3D Tongue Modelling 17 1/3/20 1/28/20

4.0 Build Prototype 4.1 Purchase materials 42 12/8/19 1/28/20

4.2 Machine/manufacture components 21 1/28/20 2/21/20

4.3 Assemble prototype 35 2/14/20 3/14/20

5.0 Test Prototype 5.1 Develop testing protocol 35 3/14/20 4/14/20

5.2 Perform tests 21 4/14/04 5/1/20

6.0 Documentation&Report 6.1 Fall mid-term report 14 9/28/19 10/13/19

6.2 Fall proposal and presentation 14 11/23/19 12/8/19

6.3 Spring mid-report/ppt 14 3/2/20 3/15/20

6.4 Final presentation and report 14 4/28/20 5/10/20

7.0 End Project 7.0 End Project 1 5/10/20 5/10/20

1.2 Design Structure Matrix (DSM)

A design structure matrix helps organize the task order for finishing a project. It
identifies inputs required for each task. For example, the weekly meetings with dentists feed
into literature review, product research, and listing of dental needs priorities [27]. See Table
2 below for the DSM of this project.

2

Table 2: Project Design Structure Matrix

0.1 1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 5.1 5.2 6.1 6.2 6.3 6.4 7

0.1 Begin Project 0.1

1.1 Dentists meetings x 1.1 x x

1.2 Literature review x x 1.2 x

1.3 Research products x x x 1.3

1.4 Prioritize dental needs x x x x 1.4

1.5 Problem statement x x x x x 1.5

2.1 Decompose project x 2.1

2.2 Research alternatives x x 2.2

2.3 Generate concepts x x 2.3

2.4 Select concepts x 2.4

3.1 Concepts analysis x 3.1 x x x

3.2 Perform simulations x 3.2 x x

3.3 Material selection x x 3.3 x

3.4 Component selection x x x 3.4

3.5 3D tongue modelling x x x x x x 3.5

4.1 Purchase materials x x 4.1

4.2 Assemble devices x x 4.2

4.3 Assemble prototype x 4.3

5.1 Develop test protocol x 5.1

5.2 Perform tests x x 5.2

6.1 Mid report 1 x 6.1

6.2 Proposal/presentation x x 6.2

6.3 Mid-report 2 x x 6.3

6.4 Report/presentation x 6.4

7.0 End project x 7

1.3 Simplified Critical Path Method (CPM)

Critical path method aids in identifying bottlenecks in a project schedule. In particu-
lar, it can identify the extent to which each task can be delayed without delaying the project.
It also identifies high risk tasks that cannot be delayed without extending the project com-
pletion date [27]. A simple/abstracted critical path of this project, which was constructed
based on the primary tasks from the WBS in Table 1, is shown in Figure 1. See Figure 25
in the Appendix (Section 12) for a detailed CPM, which was constructed based on the DSM
in Table 2.

3

Figure 1: Simplified Project Critical Path

1.4 Gantt Chart

A Gantt Chart is effective for project monitoring. It can correlate tasks with duration
time, integrate sub-tasks having separate scheduling charts, and visually represent high level
assessment of project progress [27]. See Figure 2 below for the Gantt Chart that was used
in this project.

Figure 2: Project Gantt Chart

4

1.5 Changes made to Project Management

As discussed in Section 9, due to local lock down policies enacted in response to
COVID-19, access to the hardware for dental simulation application was restricted. This
limited the development of the project application and impacted meetings with dentists.

2 Problem Definition

2.1 Problem Analysis

1) Who has the problem?

Dental professionals and students face this problem when they try to convey and un-
derstand the proper way of probing teeth.

2) What does the problem seem to be?

With recent improvements in network communication technologies, tele-operation sys-
tems can now host medical simulations under sufficient stability and reliability. How-
ever, medical operations, specifically dental probing, are highly dependent on tactile
feedback which is generally not available while tele-operating.

3) What are the available resources?

The resources are haptic devices such as Novint Falcon and Geomagic Touch, libraries
for virtual haptic experiences such as CHAI3D and Oculus VR, and networking soft-
ware such as WebRTC and NS3.

4) When does the problem occur? Under what circumstances?

This problem occurs when a there is a physical distance between a dental instructor
and student.

5) Where does the problem occur?

This problem occurs in dental facilities and medical schools.

6) Why does the problem occur?

This problem occurs because most medical tele-operation systems, specifically dental
tele-operation systems, do not have a touch feedback.

7) How does the problem occur?

This problem occurs when a dental professional wants to instruct a dental student over
a distance. A dental professional is able to only convey audio-visual data with currently
available technology. However, dental probing is a highly tactile task in which touch
feedback is crucial for a proper diagnosis.

5

2.2 Problem Clarification: Black-Box Modeling

The black-box model in Figure 3 was constructed based on the problem analysis.

Figure 3: Simple Black Box Model of the Tele-Operated Dental Simulation

Figure 4: Detailed Open Box Model of the Tele-Operated Dental Simulation

As can be seen from Figure 3, the input and output of the system is haptic-audio-
visual (HAV) data stream. The main goal of the system is to communicate HAV data
through a network according to the specifications required by the Quality of Experience.
This is further illustrated in Figure 4. The dental professional first probes and interacts
with the simulated dental model in which their hand movement and fine motor skills are
recorded in three modes; namely audio, video and haptic. This data is then transmitted
through a network to the dental student’s setup. The haptic devices in the student’s setup
serve as actuators where the teacher’s fine motor skills are replayed. The student is also be
able to receive audio-visual feedback. This is all be done in real-time (see section 2.4.1 for
specifications of what constitutes real-time in each modality) so that the system gives the

6

same experience as a dental teacher physically interacting and guiding the movements of
their student.

2.3 Problem Statement

Recent advancements in technology have enabled us to communicate through audi-
tory and visual modalities with minimum delays. However, most communication systems
lack one of the most important modalities for human communication– touch.

Touch plays an important role in forming the perception of physical environments.
Particularly in medical settings, surgeons use their sense of touch to differentiate between
different tissues, perceive pressure, and recognize blood vessels. In the dental field, touch
and pressure feedback is used to recognize unhealthy gums and teeth.

Traditionally, the training to become a medical professional, such as a dentist, is given
in person. The teacher (dental professional) has to physically show their students how to
hold the dental probe, how much pressure to apply on the gums, and how much pressure
a healthy tooth can withstand. These tasks require fine motor skills and high sensitivity
to touch. Thus, it is clear that dental training over long distance requires touch to mimic
real learning environments. Hence, a capstone project that enables real-time, long-distance,
networked HAV dental training was proposed.

In proposing this design project, it was recognized that a networked system intro-
duces additional constraints. In a tele-operated system, end users should feel and perform
as if there was no distance between them. This is ensured by making the end-to-end delay
introduced by the network well below the delay that is perceived by humans. Hence, a max-
imum delay of 70 ms for haptic data, 200 ms for visual data, and 400 ms for auditory data
must be ensured. Additionally, the jitter (packet delay variation) introduced by the network
must be less than 20 ms for haptic data to make sure it is not perceived by human end users.

The proposed design project is also constrained by the available resources. In this
project, the use of haptic devices that provide a single point of interaction for haptic feedback
was proposed despite the fact that a touch sensation is produced by multi point interaction.
See section 2.4.1 for more details on the technical constraints.

2.4 Design Constraints

2.4.1 Technical Constraints

1) Human Perception of Communication Delay [18]

a) Maximum delay of 70 ms for haptic data.
b) Maximum delay of 200 ms for visual data.
c) Maximum delay of 400 ms for auditory data.
d) Maximum jitter (packet delay variation) of 20 ms for haptic data.

7

2) Dexterity of Interaction provided by Haptic Hardware

a) No Torque Feedback provided
b) 6 Degrees of Freedom
c) Single Point of Interaction for haptic feedback

2.4.2 Non-Technical Constraints

1) Cost: Maximum cost - $ 3000 (estimated from the price of two Geomagic Touch devices
$1200x2, one Novint Falcon $200, one Oculus Rift $400, one Leap Motion Controller
$150:- a total of $3150 exactly)[7][11].

2) Safety: The haptic devices must never be unstable as an unstable force feedback is a
safety hazard.

3) Portability: The entire system setup must be mobile so that it can be easily integrated
in multiple dental institutions.

4) Maintenance: The haptic devices require a specific expertise to maintain and debug
them in-case of a malfunction.

3 Conceptualization

3.1 Background Research

Medical simulation has become an essential component of medical training as it offers
solutions to various ethical and accessibility challenges [17]. Medical training on human sub-
jects presents an ethical dilemma since it can put the subjects in danger [23]. Additionally,
training on human subjects increases the cost, as well as the duration, of many medical
procedures [32]. As the concern about the safety of human subjects grows, there is a increas-
ing need for accurate, life-like medical simulation systems that offer medical students the
necessary experience before they perform on human subjects. The first accurate mannequin
simulation model, Harvey Mannequin, replicated the human anatomy and its functions [32].
It recreated many of the physical aspects of cardiology examinations, including palpitation,
auscultation and electrocardiography [32].

This project focuses on dental operations, specifically the periodontal procedure. The
periodontal procedure is used to diagnose periodontal diseases that are caused by calcified
plaque and bacteria [36]. These diseases lead to inflammation of the space between the
tooth and the surrounding tissues [36]. The areas with affected tissues are called periodontal
pockets. A periodontal probe is used to find the depth of the space between the tooth and
the gingival sulcus to detect any signs of periodontal pockets. The depth of these pockets is
measured by the markings at the end of the periodontal probe. Dental students are trained
to recognize the depth of a pocket by sensing the interaction between the markings on the
probe and the tissues/gums surrounding the pocket.

8

A dental simulation lab has now become an essential component of dental education
and training centers. These labs include physical 3D models (i.e. typodonts [30]) as well as
advanced 3D modeling softwares and systems for dental training. Low-cost typodonts have
limited physical properties (i.e. texture, stiffness, etc.) that make them less realistic [35].
However, lifelike typodonts are costly [35]. Due to these limitations, there is an increased
interest in interactive software-based 3D models and virtual reality [35]. One of the earliest
designs of Virtual Reality Dental Training (VRDT) was built during the late nineties and it
provided training on cavity preparation [31].

The advancement of haptic technology has made it possible for developers to inte-
grate haptic feedback to VRDT. The term haptic refers to two types of perception; tactile
and kinesthetic perception [17]. The word tactile is defined as "human perception of touch"
[17]. This means that haptic refers to the feeling of touch as well as the perception of torque,
force, velocity, etc. [17]. Haptic technology has numerous applications in medical simula-
tion, telesurgery, remote disaster management, etc. Haptic feedback has been integrated to
several commercial dental simulators. Figure 5 lists the specifications of these simulators as
recorded by a survey published in the European Journal of Dental Education in 2015 [35].
This figure highlights the increasing interest in the integration of haptic-audio-visual sensory
channels within dental simulators.

Figure 5: List of Commercial Dental Simulators and their Specifications. Adapted from [35]

Similar to the commercial simulators listed in Figure 5, this design project aims to
develop a dental simulator that performs an interactive periodontal procedure training. The
main difference between the design proposed in this project and those identified in Figure 5
is that this design allows dental simulation over the Internet, specifically the Tactile Inter-
net(TI). Tactile Internet(TI) can be understood as the ability to communicate human per-
ception of touch via the Internet. This technology heavily relies on ultra-reliable low-latency
communication (URLLC) networks [34]. The emergence of innovative internet technologies

9

such as 5G Internet has enabled the TI, revolutionizing the versatility of applications that
focus on communicating touch. As such, this project proposes haptic-audio-visual simulation
of the periodontal procedure communicated over the Tactile Internet.

3.2 Concept Generation: Morphological Chart

After a thorough literary research, the project was broken down into sub-problems.
A morphological chart, which is a visualization tool for listing implementation methods and
techniques for a set of proposed tasks/problems, was then generated (see Figure 6). The
functions are categorized into those for the dental simulation application, and those for the
HAV network, both of which are further described in the following sections.

Figure 6: Morphological Chart

3.2.1 Network

• HAV Communication Platform: In order to communicate HAV data from the
trainer to the trainee, a communication platform is needed. Three options listed below
are considered for this problem.

1) WebRTC - Native C++ and JavaScript: Web Real Time Communication
(WebRTC), which was standardized throughWorldWideWeb Consortium (W3C)
and Internet Engineering Task Force (IETF) [26], is an open-source, web-based,
real-time communication API (Application Programming Interface). WebRTC is
designed to enable cross-platform, cross-browser, real-time multimedia communi-
cation between two nodes/peers. WebRTC is also designed for peer to peer (P2P)
communication of multi-modal data, as opposed to the conventional server-client
architecture, which minimizes network congestion. While the WebRTC API is
mainly available in JavaScript, it can be also be developed using C++ for a native
platform. WebRTC allows communication via User Datagram Protocol (UDP) as
well as Transmission Control Protocol (TCP). UDP allows faster but unreliable
communication whereas TCP is used for more reliable but slower communication.

10

In cases of real-time communication which require minimal delay, UDP is usually
chosen over TCP.

2) UDP: A real-time communication platform can be developed from scratch using
UDP. UDP is generally used by APIs like WebRTC at a lower level to achieve a
low delay communication.

• Network Simulation platforms can be used in order to evaluate performance under
different network conditions. Such simulations allow the evaluation of the dental sim-
ulation’s performance while varying the delay and jitter during communication. The
considered simulation platforms are listed below.

1) Network Simulator 3 (NS-3) is an open-source Linux-based platform that can
be used to simulate different types of network connections (i.e. ethernet, Wi-Fi,
etc.) to test the performance of a chosen communication platform [24].

2) Riverbed [12] is a professional tool that is used to measure the performance of
a communication system. This system can also test the performance of a system
over 5G internet connection.

3) OMNET++ is one of the oldest open-source platforms that does not only work
as a network simulator but it can also be used for "modeling of multiprocessors
and and performance evaluation of complex software systems" [24].

• Signaling: Although WebRTC communicates multi-modal data between two peers
without using a server, it needs a signaling server to coordinate communication between
the peers. Before data communication starts, the peers coordinate by sending control
metadata via the signaling server. The WebRTC API does not implement signaling
platforms. Hence, the considered signaling servers are listed below.

1) Node.js Server (Localhost): [19] Node.js is an open-source JavaScript run-
time environment. A Node.js locally hosted server can be established using the
Socket.IO Node.js module.

2) UDP [1] is a protocol that can be used for signaling. UDP compromises on
reliability in order to achieve low latency. Due to its low-level implementation, it
can become very difficult to integrate a UDP signaling system to a communication
platform.

3) Firebase [2] is a web application development platform developed by Google.
Firebase can be used to establish a signaling server but is no longer open-source.

3.2.2 Application

• Haptic Interface is used to record and actuate haptic data in the form of position,
velocity and/or force data. In this project, the interaction of the dental tools (the probe
and the mirror) with the 3D model of teeth, gums, tongue and cheeks is recorded and
then actuated. Amongst the different haptic devices available in the market, three of
them were considered: Geomagic Touch [11], Novint Falcon [7], and Phantom Premium
[8]. All three devices can interact with 3D objects in a virtual graphical environment.

11

1) A Geomagic Touch consists of a stylus that has six degrees of freedom and its
range of motion includes hand pivoting at wrist [11].

2) A Novint Falcon consists of a removable spherical grip that has three degrees
of freedom [6]. Its work-space is smaller than that of the Geomagic Touch.

3) A Phantom Premium also consists of a stylus and has 6 degrees of freedom
like the Geomagic Touch. In addition, a Phantom Premium also provides torque
feedback.

• Visual Display is used for the display of 3D models and the setup can be achieved
in three different ways.

1) 2D visual display, where the trainer and trainee see the set-up on a 2D screen,
is commonly used in simulations.

2) Virtual Reality (VR) environment allows the user to feel as if they are physi-
cally present in front of the set up. This makes the experience more immersive.

3) Augmented Reality (AR) overlays or projects images and/or other digital
features onto the real world environment and allows user interaction.

• 3D Models of Oral Cavity can be made from scratch or retrieved from existing 3D
model databases.

1) Turbosquid [3] is a website that has high definition 3D models. Although the
more realistic models are expensive, the website offers a variety of models with a
variety of prices. The models are available in a variety of formats.

2) MakeHuman [28] is an open source software that enables users to build 3D
models of different human body parts from base meshes. It has high flexibility
for making 3D models of the human anatomy specifically. These models can be
exported in a variety of formats.

3) Free3D [9] is a website that has a range of 3D models with different levels of
complexities. This makes some of the models cost-effective. The models are
available in a variety of formats.

• Simulation Framework and Library: Another important feature of this project
is to enable the playback of HAV data once the simulation ends. Certain libraries
have functions that can be used to achieve this feature. Some of the common libraries
available are: CHAI-3D, Open Haptics and H3D.

1) CHAI3D [4] is an open-source software that serves as a framework for computer
haptics, visualization and interactive real-time simulation. It supports multiple
haptic devices with different degrees of freedom. It can work with several libraries
that can create interactive real-time VR simulations.

2) Open Haptics [15] is a software that allows haptic interaction with 3D design
applications. It can work alongside graphic libraries like OpenGL which creates
high quality objects that can interact with haptic devices. Open Haptics only
supports 3D System PHANTOM devices.

12

3) H3D [29] is an open-source, real-time development platform that uses platforms
like OpenGL and X3D to create simulations with graphical and haptics integra-
tion. It also allows integration of multiple haptic devices.

• Hand Tracking records the position of the instructor’s hand in the physical environ-
ment and maps it to the haptic interface device that serves as the finger support. This
mechanism makes the simulation ergonomic and realistic by imitating how a dentist
rests their ring finger on a patient’s front teeth. Three different ways were considered
to achieve this tracking.

1) Color Markers can be tracked real-time through computer vision [25]. An RGB
color model, which takes in video data from two webcams placed perpendicularly,
can be used to deduce the position of a specific color in the field of view.

2) Neural Network can be trained using images of hands in different orientation.
This model can then be used to recognize hands and specific fingers in the physical
environment.

3) Leap Motion is a sensor that can track the position of hands and fingers. It
uses infrared cameras and algorithms that enable it to accurately track hands in
real-time and predict their position if they are occluded [5].

3.3 Concept Selection: Pugh Charts

Once the morphological chart was completed, Pugh charts were generated to select
the best solution based on an evaluation criteria. For each problem in the morphological
chart, each proposed solution was set as base (one at a time) while the remaining solutions
were compared to the base. The following scoring system was used for comparison:

• -1 means inferior to the base

• 0 means similar to the base

• 1 means superior to the base

The sum of these scores was taken for all the Pugh Charts to select the best solution.

13

3.3.1 Network

• HAV Communication Platform
Table 3 shows the Pugh Chart of HAV Communication Platform. The total score
supported the selection of either WebRTC, Native C++ or JavaScript. The choice
between C++ based WebRTC and the JavaScript based WebRTC depended on the
trade between latency and the complexity of the program. Since, JavaScript based
WebRTC seemed to comply with the minimal allowable latency for the communication
of haptic-audio-visual data, it was chosen over C++ based WebRTC. This assessment
was based on the following:

1) Complexity: Is the platform least complicated to use?

2) Latency: Is the delay of the communication minimum?

3) Real-time: Is the communication real-time?

4) Reliability: Is the communication reliable (with fewer packets loss?)

Table 3: Pugh Charts of HAV Communication Platform

Concept Evaluation Criteria

HAV Communication Platform Complexity Latency Real-time Reliability Sum

WebRTC Native C++ base

WebRTC JavaScript +1 -1 0 0 0

UDP -1 +1 0 -1 -1

WebRTC Native C++ -1 +1 0 0 0

WebRTC JavaScript base

UDP -1 +1 0 -1 -1

WebRTC Native C++ +1 -1 0 +1 1

WebRTC JavaScript +1 -1 0 +1 1

UDP base

14

• Network Simulation
Table 4 shows the Pugh Chart of Network Simulation. The total score supported the
selection of NS-3 or OMNET++. However, NS-3 was chosen over OMNET++ since it
has more networking features and its simulation is faster. This assessment was based
on the following:

1) Cost: Is the technique most cost-effective?

2) Complexity: Is the platform less complicated to use?

3) Networking Features: Does the technique have the most features for network
simulations (i.e. 4G and 5G simulation)?

4) Time: Is the simulation fast enough?

Table 4: Pugh Charts of Network Simulation

Concept Evaluation Criteria

Network Simulation Cost Complexity Networking Features Time Sum

NS-3 base

Riverbed -1 +1 +1 -1 0

OMNET++ 0 +1 -1 -1 -1

NS-3 +1 -1 -1 +1 0

Riverbed base

OMNET++ +1 +1 -1 +1 2

NS-3 0 -1 +1 +1 1

Riverbed -1 -1 +1 -1 -2

OMNET++ base

15

• Signaling
Table 5 shows the Pugh Chart of Signaling. The total score supported the selection of
Node.js or UDP. Node.js was chosen over UDP because the reliability was prioritized.
This assessment was based on the following:

1) Cost: Is the tool cost-effective?

2) Latency: Does the signaling allow end-to-end communication with minimum de-
lay?

3) Reliability: Is the tool reliable enough (i.e. has minimum packet loss)?

4) Compatibility: Is the tool compatible with both C++ and JavaScript WebRTC
implementations?

Table 5: Pugh Charts of Signaling

Concept Evaluation Criteria

Signaling Cost Latency Reliability Compatibility Sum

Node.js base

UDP 0 +1 -1 0 0

Firebase -1 0 0 -1 -2

Node.js 0 -1 +1 0 0

UDP base

Firebase -1 -1 +1 -1 -2

Node.js +1 0 0 +1 2

UDP +1 +1 -1 +1 2

Firebase base

16

3.3.2 Application

• Haptic Interface
Table 6 shows the Pugh Chart for Haptic Interface. The total score supported the
selection of the Phantom Premium. However, a Geomagic Touch was chosen because
the low cost was an advantage. The realism and data quality of a Geomagic Touch,
although lower than that of a Phantom Premium, were good enough for the setup.
This assessment was based on the following:

1) Cost: The product with the minimum cost.

2) Realism: The product that allows closest to real experience.

3) Ease of use: The product that is more compatible with the Haptodont setup is
preferred.

4) Data Quality: The product with maximum data quality is preferred.

Table 6: Pugh Charts of Haptic Interface

Concept Evaluation Criteria

Haptic Interfaces Cost Realism Ease of Use Data Quality Sum

Geomagic Touch base

Novint Falcon +1 -1 -1 -1 -2

Phantom Premium -1 +1 0 +1 1

Geomagic Touch -1 +1 +1 +1 2

Novint Falcon base

Phantom Premium -1 +1 +1 +1 2

Geomagic Touch +1 -1 0 -1 -1

Novint Falcon +1 -1 -1 -1 -2

Phantom Premium base

17

• Visual Display
Table 7 shows the Pugh Chart for the Visual Display. The total score supported the
selection of virtual reality. This assessment was based on the following:

1) Cost: Is the method cost-effective?

2) Realism: Does the method give a close to real experience for a dental procedure?

3) Immersion: Is the method more immersive and less distractive?

4) Flexibility: Is it flexible enough to give the user a complete control over the setup?

Table 7: Pugh Charts of Visual Display

Concept Evaluation Criteria

Visual Display Cost Realism Immersion Flexibility Sum

2D Screen base

VR -1 +1 +1 +1 2

AR -1 +1 +1 +1 2

2D Screen +1 -1 -1 -1 -2

VR base

AR +1 -1 -1 -1 -2

2D Screen +1 -1 -1 -1 -2

VR -1 +1 +1 +1 2

AR base

18

• 3D Models of Oral Cavity
Table 8 shows the Pugh Chart for the sources available to obtain 3D models of tongue,
cheeks, head, and teeth, etc. The total score supported the selection of Free3D. This
assessment was based on the following:

1) Cost: Is the model cost-effective?

2) Realism: Does the technique give a close to real experience for a dental procedure?

3) Complexity: Do the models have the appropriate complexity (i.e. have a suitable
number of polygons) to fit the design?

4) Flexibility: Is the format of the models flexible enough to be used with 3DS MAX?

Table 8: Pugh Charts of 3D Models of Oral Cavity

Concept Evaluation Criteria

3D Modeling of Oral Cavity Cost Realism Complexity Flexibility Sum

MakeHuman base

TurboSquid -1 +1 -1 -1 -2

Free3D 0 -1 +1 +1 1

MakeHuman +1 -1 +1 +1 2

TurboSquid base

Free3D +1 -1 +1 +1 2

MakeHuman 0 +1 -1 -1 -1

TurboSquid -1 +1 -1 -1 -2

Free3D base

19

• Simulation Framework and Libraries
Table 9 shows the Pugh chart for framework and library used to make the dental
simulation application. The total score supported the selection of CHAI3D or H3D.
Chai3D was chosen over H3D because of its compatibility with multiple 3D and 2D
object filetypes for the development of the VR simulation. This assessment was based
on the following:

1) Accessibility: Is the platform open-source?

2) Multimedia Support: Is the software compatible with multiple 3D and 2D object
filetypes?

3) Supporting Haptic Devices: Is the platform easily compatible with multiple haptic
devices?

4) Availability: Is there an existence of a community that supports the platform? Is
the API actively updated and developed?

Table 9: Pugh Charts of Simulation Framework and Library

Concept Evaluation Criteria

Simulation Framework & Library Accessibility Multimedia Support Supporting Haptic Devices Availability Sum

CHAI3D base

Open Haptics -1 -1 -1 0 -3

H3D 0 -1 +1 0 0

CHAI3D +1 +1 +1 0 3

Open Haptics base

H3D +1 +1 +1 0 3

CHAI3D 0 +1 -1 0 0

Open Haptics -1 -1 -1 0 -3

H3D base

20

• Hand Tracking
Table 10 shows the Pugh Chart for the hand tracking. The total score supported the
selection of either color based tracking algorithm or Leap Motion. Though they had
the same score, Leap Motion was chosen over the color based tracking algorithm since
high accuracy and low complexity were prioritized. This assessment was based on the
following:

1) Cost: Is the technique most cost-effective?

2) Complexity: Is the platform least complicated to use?

3) Latency: Does the technique introduce the shortest delay time?

4) Accuracy: Is the tracking done accurately?

Table 10: Pugh Charts of Hand Tracking

Concept Evaluation Criteria

Hand Tracking Cost Complexity Latency Accuracy Sum

Color Markers base

Neural Networks 0 -1 -1 +1 -1

Leap Motion -1 +1 -1 +1 0

Color Markers 0 +1 +1 -1 1

Neural Networks base

Leap Motion -1 +1 +1 0 1

Color Markers +1 -1 +1 -1 0

Neural Networks +1 -1 -1 0 -1

Leap Motion base

21

4 Simulation and Experimentation

4.1 Network

One of the key features of this design is its real-time implementation. Thus, it is
important to make sure that the end to end delay is well below what is perceptible and
within the set technical constraints. In particular, the constraint is the maximum allowable
delay after which the latency becomes perceptible by the user (see Section 2.4.1 for further
detail). WebRTC and NS-3 were used to evaluate and simulate end-to-end communication
delay of the dental simulation, as described below.

4.1.1 Evaluation through WebRTC Browser

WebRTC’s getStats() function is an easy method used to get the reading of network
performance (i.e. delay, jitter, packet-loss, packets sent per second, bits sent per second).
Figure 7 below shows the results obtained from the getStats() function while an example
WebRTC application is running. Since this method allows to monitor parameters like delay,
jitter and packet loss while the communication system is running, it gives real time feedback
on which network conditions affect the parameters the most.

Figure 7: Real-time Plots generated from WebRTC getStats()

4.1.2 Simulation through NS-3

The HAV communication network performance can be simulated using NS-3; a net-
work simulator that can introduce selected values of delay, jitter, and packet loss to test

22

the performance of a network in different conditions. NS-3 allows users to simulate different
types of connections such as Ethernet, 4G, 5G, etc. Thus, the designed HAV communication
system can be tested under different network conditions to analyze its behavior in internet
environments an end user might encounter. Although preliminary work simulating place
holder dummy networks was done on NS-3, the designed HAV communication network was
not simulated using NS-3 due to limited lab access introduced by COVID-19 restrictions (see
Section 9 for further detail).

4.2 Application

4.2.1 Hand tracking

The goal here was to accurately track the hands in order to provide precise finger
support. The parameters under test were:

• Position of the joints and knuckles

• Palm position

• Ring Finger position without the use of tools (No tool Occlusion)

• Ring Finger position while using tools (Possible tool Occlusion)

The native frame object obtained from Leap Motion (see Figure 8) was used to acquire
the test data of the parameters listed above. Using this data, an iterative procedure was
followed to find the optimal leap motion placement and orientation that ensures minimum
occlusion and maximum data credibility. This means several experiments were run while
changing the Leap Motion’s position in order to get the optimum position that provides an
accurate representation of the palm and ring finger in the environment.

Figure 8: Hand tracking using leap motion

23

4.2.2 Feedback from Dental Community

The dental training simulation, particularly the oral cavity model and the finger
support, must be as realistic as possible. This was ensured by receiving periodic feedback
from dental professors; primarily professors from NYU College of Dentistry (dental.nyu.edu).

In order to assess if the designed simulation accurately teaches the necessary skills,
probing procedures were recorded as dental professors performed them on the oral cavity
model. These recordings can then be used as a baseline to evaluate a dental student’s
performance. A survey can also be used to provide data regarding the ease of usage and
learning experience of the students as they interact with the simulation. Though a dental
probing procedure was recorded, the simulation was not tested with dental students and
remains as a future plan.

5 Final Design
The complete design of this project is composed of two constituents; the HAV com-

munication network, and the dental simulation end application.

5.1 Initial Network Design

Using the selected concepts from Section 3.3.1, the HAV communication network
was designed using WebRTC and a locally hosted Node.js signaling server. Because both
WebRTC and Node.js only include audio-visual communication for developmental flexibility,
a haptic communication feature was added to create a haptic handshake protocol discussed
in Section 5.1.1. Node.js signaling described in Section 5.1.2 is required to extend HAV
communication from a localhost to multiple computer-based setup.

5.1.1 Haptic Handshake Protocol and Operation Design

HAV communication is initiated by a haptic handshake protocol shown in Figure
9. The protocol comprises of metadata communication and data communication, termed
respectively as "Haptic Control State" and "Operation State".

24

Figure 9: Schematic of the designed haptic handshake. ’Haptic Control State’ involves a
simple 3-way handshake consisting of request, response, and acknowledgement

In haptic control state, haptic devices exchange their metadata such as degree of
freedom, and points of interaction. This is done by the local node ’A’ sending a "request
to connect" to remote node ’B’. The remote node then sends a response detailing its own
specifications. Finally, the local node sends another message acknowledging the response and
confirms the agreed upon specifications. This is followed by the operation state, commenc-
ing the bidirectional HAV data communication between the devices. In addition to data
communication, the network keeps a control channel open in-case additional metadata need
to be communicated during the operation. This enables the haptic devices to be switched
to different models without the need to restart the communication.

The WebRTC-based implementation of the haptic handshake protocol is described in
Section 7.1.4.

5.1.2 Signaling Server

As mentioned before, WebRTC requires a signaling server to establish communication
between two peers. Hence, a server-client architecture was designed using the Socket.IO
Node.js module. In this design, a Node.js application establishes a locally hosted server.
Following this, the browser clients connect to the server and exchange their SDP (Session
Description Protocol, a media description format for session announcement and invitation)
in order to start the communication session. From here on, the communication is peer to
peer (browser-to-browser) as shown in Figure 9.

25

5.2 Initial Application Design

The dental simulation was designed using a CHAI3D based oral cavity model and Leap
Motion hand tracking for finger support. The experimental setup for the dental simulation,
hereon referred to as Haptodont, is shown in Figure 10.

Figure 10: Haptodont Front View: Two Geomagic Touch haptic devices on top with Oculus
Rift Camera, and Novint Falcon Finger Support on the Base.

5.2.1 3D Oral Cavity Model

A CHAI3D library-compatible oral cavity model was designed by integrating the
ready-made models shown in Figure 11. The GEL library module in CHAI3D was used to
introduce gel-like deformation of the cheeks in the oral cavity model. Hence, when a dental
instructor or student interacts with the cheeks using the dental probe or mirror, they are able
to see and feel the cheek stretch. This design makes the virtual simulation more realistic.

26

Figure 11: 3D Oral Cavity Model

5.2.2 Haptodont Application

The complete Haptodont application is composed of the 3D oral cavity model, dental
probe and mirror model, and 3D buttons to change the orientation of the oral cavity model.
The probe and mirror models (see Figure 12) are controlled by the styli of the Geomagic
Touch devices. These models replicate the dental probe and mirror tools that are used by
dentists. The mirror tool was modeled using a front camera to mimic a real mirror. The
probe model has markings at its tip that indicate the depth of pockets in the gums. The oral
cavity rests on a base that can be rotated using the interactive buttons in the simulation.
This freedom of movement makes the Haptodont simulation ergonomic and natural.

Figure 12: 3D model of mirror (left) and probe (right) used in the Haptodont simulation

5.2.3 Hand Tracking

A finger support was designed for a more realistic user-experience. This support
simulates the dentists’ technique of resting their ring finger on the chin or lower teeth of

27

the patient. In order to determine the position of the ring finger within the Haptodont
simulation, the user’s hand was tracked using the Leap Motion device. Once this position
was located, a Novint Falcon device was used to simulate finger support by providing haptic
feedback at the last joint of the ring finger. The Leap Motion can track either hand of the
user which means finger support can be provided whether the user is right or left handed.

5.2.4 Playback Integration

Haptic Playback is similar to video and audio playback whereby the student is able
to replay the instructor’s haptic interactions with the model. This gives the student the
opportunity to learn the instructor’s fine motor skills without the need for a one-to-one
instruction session. Haptic Playback was implemented by recording the haptic packets in a
file instead of sending them through the HAV communication network. This file can then be
replayed as needed to observe the instructor’s interaction with the Haptodont simulation.

5.3 Future Plan: Native WebRTC C++ integration

According to the Pugh Charts in Table 3, the choice made between the JavaScript
(JS) based WebRTC platform and the Native C++ WebRTC platform comes down to the
compromise between the complexity of using the API and the latency introduced by the
API. One of the main issues with the current design of the JS based WebRTC network
is the overhead caused by sending the haptic packets from a C++ environment to a JS
environment. As further detailed in the implementation section 7.1, Websockets were used
to transmit haptic data from C++ to JS environment. This introduced additional delays
which could have been avoided with the use of the Native C++ WebRTC platform. However,
the C++ platform was significantly more complex than the JS platform and hence it was
decided to implement it in the future.

5.4 Design Review

With the integration of all the design elements mentioned above, the final design:

• provides a life-like virtual patient developed in immersive virtual reality.

• allows dental students to have realistic training experience on the Haptodont simula-
tion.

• has a robust, low latency, and high reliability communication network that sends HAV
data packets between two nodes.

• is easy-to-use and cost-effective (when compared to other simulators in the market).

6 Budget
The price of each device is listed below for reference. Note that the prices listed above

were based on market price as of December 8, 2019. The Applied Interactive Media Lab had
purchased these devices before the start of this capstone project.

28

• Two Geomagic Touch devices - $1200x2 = $2400 [10][11].

• One Novint Falcon device - $200 [7].

• One Oculus Rift - $400 [13]

• Two Leap Motion Controllers - $150 [14] [22].

7 Implementation

7.1 Network: On Localhost

The implemented network includes several components: the haptic handshake, com-
munication of data between haptic device and the C++ platform, the transfer of data be-
tween the C++ platform and JavaScript based communication platform, and the transmis-
sion of data within the JavaScript platform. The localhost implementation of the simulated
HAV network is shown together in Figure 13. The sections below detail the current imple-
mentation of the HAV communication network.

Figure 13: HAV Handshake Simulation Diagram

Ideally, the HAV network would be implemented in one program. However, the net-
work was implemented using the JavaScript WebRTC API, while a C++ based CHAI3D
application was used to access the haptic devices. Because of this, the implementation had
to be divided into three programs: C++ HapticSlave, HTML/CSS/JavaScript HAVnetSim-
ulation, and C++HapticMaster.

The HTML/CSS/JavaScript browser communicates haptic data between simulated
slave and master. The haptic data is provided by the C++ programs that are interfaced to
Novint Falcon haptic devices. The characteristics of haptic data, combined with AV data, is

29

determined by AV metadata and TIM (Tactile Internet Metadata) which was communicated
during the HAV handshaking phase. The attributes of the HAV data can also be renegoti-
ated during operation phase by using the control data channel.

Several existing projects and libraries were merged to create a set of three programs.
The browser consists of WebRTC and C++WebSocket Server Demo’s client project. The
client project consists of jQuery and simple-websocket. jQuery simplifies traditionally ver-
bose JavaScript expressions while simple-websocket was used to receive websocket data.
Both of the C++ programs (Master and Slave) consist of C++ WebSocket Server Demo’s
server project, Chai 3D, and Haptic Codec provided by Prof. Xiao Xu from TUM (shared
only within AIM Lab). The server projects consists of WebSocket++, Asio, and Jsoncpp.
WebSocket++ allows data to be sent on WebSocket via C++, Asio aids the networking pro-
cess through Asynchronous Input/Outputs, and Jsoncpp allows creation and management
of JSON objects in C++. Chai 3D was used to sense and actuate the Novint Falcon devices.
Simplified version of HapticCodec was used to form haptic data packets that were then con-
verted into stringified JSON via Jsoncpp and WebSocket++. The stringified JSON haptic
data packets were then sent form the C++ Master/Slave environment to the JavaScript
browser in real time using simple websockets. More implementation details and specific code
snippets can be seen in the appendix (Section 12).

Once the haptic packets were sent from the C++ Master/Slave environment to the
JS WebRTC environment, they were then communicated browser to browser using RTCDat-
aChannel. First, a one-directional communication, where master haptic device sends posi-
tion/velocity data and slave haptic device actuates, was implemented. The communication
was then made bidirectional by sending force data from the slave device to the master device.

7.1.1 A WebRTC-based HAV Communication Model

Section 5.1.1 introduced a haptic handshake protocol subsuming WebRTC’s exist-
ing AV communication. Figure 14 illustrates how this was implemented. Because of the
WebRTC architecture, our implementation first sets up the AV side of handshake and com-
munication, as denoted by the demarcated dashed lines. The haptic handshake and com-
munication described in Section 5.1.1, shown in the lower right box, runs alongside with AV
operation state. More implementation details and specific code snippets can be seen in the
appendix (Section 12).

7.1.2 Haptic Handshake Protocol: Haptic Control State

The haptic control state model in Section 5.1.1 was implemented as shown in Figure
15.

30

Figure 14: WebRTC-based HAV Communication Model

Figure 15: Haptic Handshake Request/Response/ACK Model.

The createRequest() function creates a request object that contains local device-
specific metadata such as maximum allowable latency, jitter, and degrees of freedom. The
sendRequest() function sends the object to the remote device through RTCDataChannel.
The remote device, based on its own metadata, modifies and sends the object back as a
response object. Upon receival, the local device replies with an acknowledgement (or Ack)
object, opening RTCDataChannel for HAV data communication.

31

7.1.3 Haptic Handshake Protocol: Request/Response/ACK Messages

The request/response/Ack objects, shown in Figure 16, are based on IETF’s text-
based SDP for media session negotiation [20][33]. This allows easy and fast processing of the
metadata.

{ type : " r eque s t " or " response " or "ACK"
s e s s i o nDe s c r i p t i o n :
"v=0
o=− <timestamp> <sess ionVers ionCounter> IN IP4 <IPAddress>
s=Haptic SDP
i=SDP f o r Haptic Handshake
t= 0 0
a=<add a t t r i b u t e at the s e s s i o n l e v e l >"

mediaDescr ipt ion :
"m=hapt i c : <DeviceName> <portNumber> SCTP/DTLS HRTP 1
i=Novint Falcon Haptic System
a=QoS_hapLatency : <IntegerValue>
a=QoS_hapJitter : <IntegerValue>
a=QoS_hapRel iabi l i ty : <IntegerValue>
a=UE_immersion : <Boolean 0 or1>
a=UE_col labortat ion : <Boolean 0 or 1>
a=UE_sat i s fact ion : <Boolean 0 or 1>
a=UE_presence : <Boolean 0 or 1>
a=Hap_Deadband : <Boolean 0 or 1>
a=Hap_kinSampleRate : <IntegerValue>
a=Hap_tacFequency : <IntegerValue>
a=HapI_dof : <NaturalNumberValue>
a=HapI_ws_x_y_z : <IntegerValueo fx> <IntegerValueo fy> <IntegerVa lueo fz>
a=HapI_fr_x_y_z : <IntegerValueo fx> <IntegerValueo fy> <IntegerVa lueo fz>
a=HapI_tr_x_y_z : <IntegerValueo fx> <IntegerValueo fy> <IntegerVa lueo fz>
a=UA_0001 (add custom a t t r i b u t e s here . . .) "

CodecParams :
"RecordSigna l s =0; // 0 : Recording o f f , 1 : Recording on
ForceDeadbandParameter =0.0 ; // f o r f o r c e data reduct i on
VelocityDeadbandParameter =0.0 ; // f o r v e l o c i t y data reduct i on
PositionDeadbandParameter =0.0 ; // f o r p o s i t i o n data reduct i on
ForceDelay=0; // Constant f o r c e network de lay
CommandDelay=0; // Command channel constant de lay
ControlMode=1; // 0 : po s i t i on , 1 : v e l o c i t y
FlagVeloc i tyKalmanFi l ter =0; // 0 : d i sab led , 1 : enabled
LocalIP =127 . 0 . 0 . 1 ; // l o c a l node
RemoteIP=127 . 0 . 0 . 2 ; " // remote node}

Figure 16: Template of Request/Response/ACK object inspired by the textual format of
SDP.

32

7.1.4 Haptic Handshake Protocol: Browser Interface

The haptic handshake protocol is managed through a WebRTC-based browser menu,
as shown in Figure 17. The functions described in Section 7.1.1 are controlled by correspond-
ing buttons on the screen, and the request/response objects are shown below. The "Start"
and "Hang Up" buttons initiates and terminates the HAV communication respectively.

Figure 17: GUI for Controlling HAV Handshake and Communication.

7.2 Issues faced during implementation

7.2.1 Application: Hand Tracking and Finger Support

Hand tracking was initially proposed to track the fingers and knuckles of the trainer’s
hand in order to obtain the position of the fingers in the environment. This position data
would then be used by the finger support Novint Falcon device to simulate teeth supporting

33

the fingers during a probing session. As mentioned in previous sections, a leap motion device
was chosen as the hand tracking method.

The main issue faced during implementation of this procedure is occlusion. Accurate
position of the joints and knuckles is needed for a successful performance of the finger sup-
port. However, tool occlusions (occlusions caused by the probing device) and self occlusions
(occlusions caused by the hand itself, such as the palms and fingers) prevent the leap motion
device from gaining accurate position information. To overcome this challenge, two leap
motion devices were used in orthogonal fields of view to gain a better representation of the
hand in the physical environment. Although this improved the performance of the hand
tracking, it still didn’t solve the problem of occlusions since no clear view of the target distal
phalanges (bones at the tips of the fingers) was obtained. This uncertainty in the position
of the target distal phalanges then caused instability of the finger support.

Tracking the fingers more accurately could be done using machine learning algorithms
that make use of optimal camera/leap motion placement. However, implementing this was
out of the scope of this design project. Hence, hand tracking was not implemented in this
design project.

7.2.2 Application: Deformable Oral Cavity Model

The Chai 3D GEL library was explored to give the cheeks and tongues in the oral
cavity model the attributes of gel-based materials. Although the library and its demo ap-
plication were successfully integrated into the Haptodont application, further development
seemed to have diminishing returns. This was due to the GEL library being computationally
demanding and too complex to develop realistic deformation. Hence, this functionality was
disabled in this implementation but can be turned on when needed.

7.3 Changes made during implementation

7.3.1 Network: Signaling Server-Client Communication Architecture

As discussed in section 5.1.2, the signaling server aids with session establishment by
communicating SDP between the connected browsers. The architecture followed to imple-
ment this is shown in Figure 18. However, this architecture requires the use of an external
server. Since the main goal of this project was to design a network while introducing mini-
mal delays, the architecture seen in Figure 18 was unravelled and implemented on local host.
This unravelled implementation can be seen in Figure 19. Here, three locally hosted servers
are open simultaneously. The "Master Server" application interfaces with the haptic device,
packetizes the haptic data (velocity and/or position), and sends the haptic packet to the
"Master Client Browser" via a web-socket port (Port A). The "Slave Server" application is
identical to the "Master Server" application, except that it sends force haptic packets and
actuates velocity/position packets. When the packets reach the client browsers, they are
recorded onto a file. This file is then read by the browsers ("Browser 1/2") on each node
and the haptic packets are communicated peer-to-peer bidirectionally via RTCDataChannel.
More implementation details and specific code snippets can be seen in the appendix (Section
12).

34

Ideally, "Browser 1" and "Browser 2" would be replaced by the Master and Slave
client browsers. This would enable direct communication between the master and slave
haptic devices without the need for record/play. However, this was not implemented as it
required the use of an external signaling server that can establish a session between the
"Master Client Browser" and the "Slave Client Browser".

Figure 18: Signaling Network Architecture

Figure 19: Unravelled Signaling Network Architecture

35

7.3.2 Application: Finger-Support

Since hand tracking for finger support was no longer being implemented, the means of
obtaining finger position data changed. Instead of obtaining the position data from the Leap
Motion tracking, the position of the fingers was deduced from the Geomagic Touch device
that is used as a probing tool in the simulation. Although this method did not provide
accurate position data, it still gave the orientation and relative position of the hand holding
the probing device.

The finger support was then set to be 15 mm away from the tooth that is being
probed in the physical space. A buffer of 5 mm was used to trigger the support; "move"
command was dispatched only when the probe moves more than 5mm from its relative
position or orientation. This implementation needs to be more realistic and dynamic in
future iterations. For example, the fixed 15 mm distance in the physical environment does
not allow flexibility when it comes to differing hand sizes.

7.4 Initial Results

Based on simple networking statistics, the mean latency introduced by the TIM hand-
shake implementation was measured to be 47.25 ms, with 23.38 ms standard deviation. This
is well below the threshold required by the technical constraints.

7.5 Video Demonstration of Completed Design

The following link demonstrates the Haptodont simulation with CHAI3D oral cavity
model, Oculus Rift, and haptic devices in one setup : https://youtu.be/jstlJ6TwCEA

8 Contribution to IEEE 1918.1.1 Working Group (WG)
The IEEE 1918.1 working group (WG) aims to envision and standardize various

modules crucial for the realization of the Tactile Internet (TI). Our capstone have been
contributing to this effort as part of their TIM handshake and HAV data communication
standardization effort. The haptic handshake protocol was presented to WG on Summer
2019, and then presented to the 2019 IEEE International Symposium on Haptic, Audio and
Visual Environments and Games (HAVE) in October 2019 [21]. Figure 13 was presented to
WG early March to update on the progress of HAV network implementation. This was the
second time to progress was presented, the first one being on August 2019. WG members
expressed high satisfaction in the progress, and are currently hoping to obtain a completed
implementation by the end of May for validation. Documentation for the HAV network
implementation is attached in the Appendix (Section 12).

36

https://youtu.be/jstlJ6TwCEA

9 Impact of COVID-19 on the Capstone Design Project

9.1 Network

9.1.1 Network Simulation

NS-3 is a Linux based Network Simulator. Due to limited access to the lab, a Linux
machine with NS-3 installed was not acquired (in a timely manner). Hence, network simu-
lation of the delay and jitter introduced by the internet was not conducted.

9.2 Application

9.2.1 Integration of Haptodont End-Application and Communication Network

Although the Haptodont end-application and the communication network for HAV
data was completed, these two pieces were not integrated to each other due to limited access
to the lab. The Haptodont setup is located in the lab and our work on that setup was
completed before COVID-19 restrictions. Our work on the communication Network was
completed after COVID-19 restrictions, but this implementation could not be integrated
with the Haptodont due to limited access to the lab.

9.2.2 Application Testing

An important criteria for the design evaluation of the Haptodont application was to
introduce the setup to the dental community and to collect feedback from the instructors,
students and dental experts. The probing performance and task completion time of the
Haptodont setup needed to be determined by comparing it to the student’s performance on
a real setup. However, due to COVID-19 restrictions and physical distancing, testing with
the dental community could not be carried out.

10 Ethics
The following ethical considerations were taken into account while developing the

proposed HAV Tele-Dental Training Simulation.

• Network Security - The system is highly reliant on the internet, which makes it prone
to hacking attacks that could endanger end users. These can be alleviated by imple-
menting end to end encryption. Some examples of security threats are:

1) Sending unstable force feedback with the intent to harm end users.

2) Hacking the system and tempering with the grading system.

3) Illegally distributing an expert’s recorded motor skills.

• Device Safety - Stability of the haptic devices must be ensured at all times as unstable
force feedback could injure the end users. Stability was ensured by implementing a
threshold for the maximum allowable force feedback.

37

• Privacy (Confidentiality) - Users must give an informed consent to have their audio,
video and haptic interactions recorded. This can be implemented by asking the users
to read and sign a release form if they agree to having their data recorded.

11 Design Evaluation

11.1 Criteria for Design Evaluation

1) Communication Network Performance [18]

The network should not exhibit delays that are noticeable by the human end users.
These delays are listed in section 2.4.1. Additionally, the maximum delay allowed by
the network should be lower than the maximum delay perceived by humans so that
some time is used as a buffer in-case of packet loss. The network used to test for these
criteria should be 4G or higher generations.

a) Total end to end delay of less than 50 ms for haptic data.

b) Total end to end delay of less than 200 ms for visual data.

c) Total end to end delay of less than 300 ms for auditory data.

d) Jitter of haptic media (Packet Delay Variation) of less than 15 ms.

2) Expert Feedback

a) Realism: A rating of more than 85% from dental professionals and field experts
on how closely this system emulates real setups.

b) Immersion: A rating of more than 85% from field experts.

3) Probing Accuracy

a) Probing Performance: There should be no significant difference (p < 0.05) between
the performance of students trained on this system versus those trained on a real
setup.

4) Task Completion Time.

a) There should be no significant difference (p < 0.05) between the time taken by stu-
dents trained on this system versus those trained on a real setup while preforming
identical procedures.

11.2 Results and Test Data

11.2.1 Network

WebRTC-internals was used to collect statistics about ongoing WebRTC sessions
[16]. The round trip time (RTT) of the audio-visual data over a localhost was obtained from
WebRTC-internals. In order to measure the delay and jitter in the communication of haptic

38

data, timestamps were added just before the hapitc data was sent from the local node and
when it was received at the remote node. The mean delay was measured to be 0.62 ms and
the jitter was found to be 0.53 ms.
Figure 20 shows the delay in the communication of a haptic packet via RTCDataChannel.

Figure 20: Delay in the communication of haptic packets over time

Figures 21 and 22 show the round trip time of the communication of audio-visual
data using WebRTC.

Figure 21: Round trip time of audio data communication

Figure 22: Round trip time of visual data communication

39

Figures 23 and 24 show packets and bytes (sent and received), jitter and packet
loss for audio-visual data streamed using WebRTC. These statistics were collected from
WebRTC-internals.

Figure 23: Packets and bytes sent and received (per second), jitter, and packet loss for audio
data

Figure 24: Packets and bytes sent and received (per second), jitter, and packet loss for video
data)

In order to obtain the expert feedback, probing accuracy, and task completion time,
the setup was to be introduced to the dental community. However, COVID-19 restrictions
made it impossible to interact with and receive feedback from the dental community (i.e.
students, professors, and experts). Refer to Section 9 for further details.

40

11.3 Discussion of Test Data

11.3.1 Network

• The measured average haptic delay was significantly smaller than the allowable haptic
delay. The standard deviation of the delay accounted for haptic jitter that was much
smaller than allowable jitter.

• Unlike audio-visual data, WebRTC-internals does not provide any statistics for the
delay in communicating data using the RTCDataChannels. Thus, timestamps were
used to find the delay and jitter in haptic data.

• The round trip time (RTT) is the time taken to send audio-visual data (from one end)
and to receive an acknowledgement of this data when it is received on the other end.
It can be deduced that end-to-end delay (time taken for the audio-visual data to be
received on the other end) is half the round-trip-time.

• Figure 21 and 22 show that the delay of the data- when communicated over the
localhost- was significantly smaller than the allowable end to end delay mentioned
above.

• Figures 23 and 24 show that there was no packet loss and minimal jitter as the audio-
visual data was communicated over a localhost.

• The received measurements ensured that this system can be plugged into real networks
without introducing considerable overhead in delay.

41

References
[1] [Online]. Available: https://tools.ietf.org/rfc/rfc768.txt

[2] [Online]. Available: https://firebase.google.com/

[3] [Online]. Available: https://www.turbosquid.com/Search/Index.cfm?keyword=oral+
cavity

[4] [Online]. Available: https://www.chai3d.org/

[5] [Online]. Available: https://learn.sparkfun.com/tutorials/leap-motion-teardown

[6] “Falcon specifications.” [Online]. Available: https://hapticshouse.com/pages/
falcon-specifications

[7] “Falcons.” [Online]. Available: https://hapticshouse.com/collections/falcons

[8] “Features: 3d systems.” [Online]. Available: https://www.3dsystems.com/
haptics-devices/3d-systems-phantom-premium/features

[9] “Free 3d models.” [Online]. Available: https://free3d.com/3d-models/3ds-max

[10] “Geo-magic touch website.” [Online]. Available: https://www.3dsystems.com/
haptics-devices/touch

[11] “Geomagic touch x - professional haptic device providing force feedback.” [Online]. Avail-
able: https://www.or3d.co.uk/products/hardware/haptic-devices/geomagic-touch/

[12] “Maximize your digital performance gain a competitive edge.” [Online]. Available:
https://www.riverbed.com/mena/

[13] “Oculus rift s.” [Online]. Available: https://www.oculus.com/rift-s/

[14] “Where to buy in the us.” [Online]. Available: https://www.leapmotion.com/
where-to-buy/us/

[15] “Openhaptics,” Aug 2018. [Online]. Available: https://www.3dsystems.com/
haptics-devices/openhaptics

[16] “webrtc-internals,” Jan 2019. [Online]. Available: https://webrtcglossary.com/
webrtc-internals/

[17] K. Antonakoglou, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler, “Toward haptic
communications over the 5g tactile internet,” IEEE Communications Surveys Tutorials,
vol. 20, no. 4, pp. 3034–3059, Fourthquarter 2018.

[18] M. Eid, J. Cha, and A. El Saddik, “Admux: An adaptive multiplexer for haptic–audio–
visual data communication,” IEEE Transactions on Instrumentation and Measurement,
vol. 60, no. 1, pp. 21–31, 2010.

42

https://tools.ietf.org/rfc/rfc768.txt
https://firebase.google.com/
https://www.turbosquid.com/Search/Index.cfm?keyword=oral+cavity
https://www.turbosquid.com/Search/Index.cfm?keyword=oral+cavity
https://www.chai3d.org/
https://learn.sparkfun.com/tutorials/leap-motion-teardown
https://hapticshouse.com/pages/falcon-specifications
https://hapticshouse.com/pages/falcon-specifications
https://hapticshouse.com/collections/falcons
https://www.3dsystems.com/haptics-devices/3d-systems-phantom-premium/features
https://www.3dsystems.com/haptics-devices/3d-systems-phantom-premium/features
https://free3d.com/3d-models/3ds-max
https://www.3dsystems.com/haptics-devices/touch
https://www.3dsystems.com/haptics-devices/touch
https://www.or3d.co.uk/products/hardware/haptic-devices/geomagic-touch/
https://www.riverbed.com/mena/
https://www.oculus.com/rift-s/
https://www.leapmotion.com/where-to-buy/us/
https://www.leapmotion.com/where-to-buy/us/
https://www.3dsystems.com/haptics-devices/openhaptics
https://www.3dsystems.com/haptics-devices/openhaptics
https://webrtcglossary.com/webrtc-internals/
https://webrtcglossary.com/webrtc-internals/

[19] N. Foundation. [Online]. Available: https://nodejs.org/en/

[20] M. Handley, V. Jacobson, C. Perkins, et al., “Sdp: session description protocol,” 1998.

[21] K. Iiyoshi, M. Tauseef, R. Gebremedhin, V. Gokhale, and M. Eid, “Towards standard-
ization of haptic handshake for tactile internet: A webrtc-based implementation,” in
2019 IEEE International Symposium on Haptic, Audio and Visual Environments and
Games (HAVE), 2019, pp. 1–6.

[22] A. Industries, “Leap motion controller with sdk.” [Online]. Available: https:
//www.adafruit.com/product/2106

[23] R. Jagsi and L. S. Lehmann, “The ethics of medical education,” Bmj, vol. 329, no. 7461,
pp. 332–334, 2004.

[24] A. Khana, S. Bilalb, and M. Othmana, “A performance comparison of network simu-
lators for wireless networks,” in Proc. IEEE Int. Conf. on Control System, Computing
and Engineering (ICCSCE), 2012.

[25] V. Kravtchenko, “Tracking color objects in real time,” Ph.D. dissertation, University of
British Columbia, 1999.

[26] S. Loreto and S. P. Romano, “Real-time communications in the web: Issues, achieve-
ments, and ongoing standardization efforts,” IEEE Internet Computing, vol. 16, no. 5,
pp. 68–73, Sep. 2012.

[27] O.-K. G. Ogot, Madara, Engineering Design: A Practical Guide, 2007.

[28] J. Palmius, J. Palmius, and J. Palmius. [Online]. Available: http://www.
makehumancommunity.org/

[29] D. M. Popovici, F. G. Hamza-Lup, A. Seitan, and C. M. Bogdan, “Comparative study
of apis and frameworks for haptic application development,” in 2012 International Con-
ference on Cyberworlds. IEEE, 2012, pp. 37–44.

[30] I. H. Randoll and R. C. McShirley, “Typodont having removable teeth,” Jan. 6 1981, uS
Patent 4,242,812.

[31] J. F. Ranta and W. A. Aviles, “The virtual reality dental training system: simulating
dental procedures for the purpose of training dental students using haptics,” in Pro-
ceedings of the fourth PHANTOM users group workshop, vol. 4. November, 1999, pp.
67–71.

[32] K. R. Rosen, “The history of medical simulation,” Journal of critical care, vol. 23, no. 2,
pp. 157–166, 2008.

[33] J. Rosenberg and H. Schulzrinne, “An offer/answer model with session description pro-
tocol (sdp),” 2002.

43

https://nodejs.org/en/
https://www.adafruit.com/product/2106
https://www.adafruit.com/product/2106
http://www.makehumancommunity.org/
http://www.makehumancommunity.org/

[34] M. Series, “Imt vision–framework and overall objectives of the future development of
imt for 2020 and beyond,” Recommendation ITU, pp. 2083–0, 2015.

[35] D. Wang, T. Li, Y. Zhang, and J. Hou, “Survey on multisensory feedback virtual reality
dental training systems,” European Journal of Dental Education, vol. 20, no. 4, pp.
248–260, 2016. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/
eje.12173

[36] M. Weinberg, C. Westphal, S. Froum, M. Palat, and R. Schoor, Comprehensive peri-
odontics for the dental hygienist. Pearson Higher Ed, 2014.

44

https://onlinelibrary.wiley.com/doi/abs/10.1111/eje.12173
https://onlinelibrary.wiley.com/doi/abs/10.1111/eje.12173

12 Appendix

12.1 Browser Code (WebRTC and Websockets)

45

/*

* This project was inspired by the Munge SDP sample example which can

* be found on the WebRTC website. The copyright from that project can

* be seen below.

 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.

 *

 * Use of this source code is governed by a BSD-style license

 * that can be found in the LICENSE file in the root of the source

 * tree.

* Authors

 Ken Iiyoshi

 Mahrukh Tauseef

 Ruth Gebremedhin

* Date

 Sun, 10 May 2020

*/

//==

// use strict mode. i.e. one cannot use undeclared variables.

'use strict';
document.addEventListener('DOMContentLoaded', init);

console.time("init time");
async function init() {

 // for hiding source selection when needed.
 const selectSourceDiv = document.querySelector('div#selectSource');

 // to choose which source of HAV to use.
 const audioSelect = document.querySelector('select#audioSrc');
 const videoSelect = document.querySelector('select#videoSrc');
 const hapticSelect = document.querySelector('select#hapticSrc');

 // to have options drop down
 hapticSelect.options[hapticSelect.options.length] = new Option('NovintFalcon');
 hapticSelect.options[hapticSelect.options.length] = new Option('GeoMagicTouch');

 console.log('DOMContentLoaded');
 try {
 const enumerateDevices = await navigator.mediaDevices.enumerateDevices();
 gotSources(enumerateDevices); // adds the devices discovered by enumerate Device to
the object for selecting which video and audio source to use.

 }

 catch (e) {
 console.log(e);
 }

 // Buttons to run the functions

 const getMediaButton = document.querySelector('button#getMedia');
 const createPeerConnectionButton =
document.querySelector('button#createPeerConnection');
 const createOfferButton = document.querySelector('button#createOffer');
 const setOfferButton = document.querySelector('button#setOffer');
 const createAnswerButton = document.querySelector('button#createAnswer');
 const setAnswerButton = document.querySelector('button#setAnswer');
 const hangupButton = document.querySelector('button#hangup');
 const handShakeButton = document.querySelector('button#StartHandshake');

 //Text areas
 const offerSdpTextarea = document.querySelector('div#local textarea');
 const answerSdpTextarea = document.querySelector('div#remote textarea');

 //Video areas
 const localVideo = document.querySelector('div#local video');
 const remoteVideo = document.querySelector('div#remote video');

 //Which functions to run when the buttons are pressed
 getMediaButton.onclick = getMedia;
 createPeerConnectionButton.onclick = createPeerConnection;
 createOfferButton.onclick = createOffer;
 setOfferButton.onclick = setOffer;
 createAnswerButton.onclick = createAnswer;
 setAnswerButton.onclick = setAnswer;
 hangupButton.onclick = hangup;
 handShakeButton.onclick = sendFromMe;

 //getMedia when the audio, video, haptic source is changed
//This ensures that a session is renegotiated if a device has changed as the metadata

would change

 audioSelect.onchange = videoSelect.onchange = hapticSelect.onchange = getMedia;

 //Constants to configure the two data channels
 //Since ordered is set to true by default, this means choosing
 //a reliable method of communication
 //For UDP set ordered to false and maxRetransmits to 0.
 //can control maxRetransmits or maxPacketLifeTime attributes but not both
 //const dataChannelOptions = { [[Ordered]], [[MaxPacketLifeTime]],
 //[[MaxRetransmits]], [[DataChannelProtocol]], [[DataChannelId]]};
 const dataChannelOptions = {Ordered: false, MaxRetransmits:0, negotiated: true, id:
0}; //for non-dynamic

 // Variables
 let localStream;
 let localPeerConnection;
 let remotePeerConnection;

 // two data channels on the local side(first one for control, second for media)
 let localChannel;
 let sendChannel;

 // the same channels on the remote side
 let remoteChannel;
 let receiveChannel;

 // variables for sending placeholder haptic data once per second
 let sendDataLoop;
 let sendDataLoop2;

 // SDP
 let orginalOfferSDP;
 let orginalAnswerSDP;
 let localHapticSDP;
 let remoteHapticSDP;

 //Global variable to hold the haptic packet from the master
 var hapticMsgFromMaster;

 //to track if a session has been established
 let sessionEstablished = false;

 // For displaying packet transmission stats
 let timeCounter;
 let packetRate;
 timeCounter = 0;
 packetRate = 0;

// Functions

//function to list the recognized audio and video devices

 function gotSources(sourceInfos) {
 selectSourceDiv.classList.remove('hidden');
 let audioCount = 0;
 let videoCount = 0;

 for (let i = 0; i < sourceInfos.length; i++) {
 const option = document.createElement('option');
 option.value = sourceInfos[i].deviceId;
 option.text = sourceInfos[i].label;
 if (sourceInfos[i].kind === 'audioinput') {
 audioCount++;
 if (option.text === '') {
 //option.text = `Audio ${audioCount}`;
 option.text = 'Microphone (Logitech Mic (Communicate STX)) (046d:08d7)';
 }

 audioSelect.appendChild(option);
 }

 else if (sourceInfos[i].kind === 'videoinput') {
 videoCount++;
 if (option.text === '') {
 //option.text = `Video ${videoCount}`;
 option.text = 'Logitech QuickCam Communicate STX (046d:08d7)';
 }

 videoSelect.appendChild(option);
 }

 else {
 console.log('unknown', JSON.stringify(sourceInfos[i]));
 }

 }

 }

//Printing the current time allows us to calculate how long the get media function takes

 console.time("getMedia time");

// function to get Media automatically from the audiovisual devices

// Media from haptic devices is obtained through the websocket

 async function getMedia() {

 // console.log("generic getMedia execution")

 //==
 // From js working haptic communication program.
 //==
 // Functions to establish the Websocket
 function SocketWrapper(init)
 {

 this.socket = new SimpleWebsocket(init);
 this.messageHandlers = {};

 var that = this;
// Whenever data event happens (whenever a packet is received)

 this.socket.on('data', function(data)
 {

 // Extract the message type
 var messageData = JSON.parse(data);
 var messageType = messageData['__MESSAGE__'];
 delete messageData['__MESSAGE__'];

 //If any handlers have been registered for the message type, invoke them
 if (that.messageHandlers[messageType] !== undefined)
 {

 let index;
 for (index in that.messageHandlers[messageType]) {
 that.messageHandlers[messageType][index](messageData);

 }

 }

 });

 }

 //If a standard event was specified, forward the registration to the socket's event
emitter

 SocketWrapper.prototype.on = function(event, handler)
 {

 if (['connect', 'close', 'data', 'error'].indexOf(event) != -1) {
 this.socket.on(event, handler);
 }

 else
 {

 //The event names a message type
 if (this.messageHandlers[event] === undefined) {
 this.messageHandlers[event] = [];
 }

 this.messageHandlers[event].push(handler);
 }

 }

//Function to send a payload with the label message

 SocketWrapper.prototype.send = function(message, payload)
 {

 //Copy the values from the payload object, if one was supplied
 var payloadCopy = {};
 if (payload !== undefined && payload !== null)
 {

 var keys = Object.keys(payload);
 let index;
 for (index in keys)
 {

 var key = keys[index];
 payloadCopy[key] = payload[key];
 }

 }

 // this function is used when client is sending to the C++ server

 payloadCopy['__MESSAGE__'] = message;
 this.socket.send(JSON.stringify(payloadCopy)); }
 //text area to log haptic data communication
 function log(text)
 {

 var outputElem = $('#outputLocal');
 outputElem.text(outputElem.text() + text + '\n');
 }

 $(document).ready(function()
 {

//The socket is opened on the local host on port 8080

 var socket = new SocketWrapper("ws://127.0.0.1:8080");

 //Generic events

 socket.on('connect', function() {
 log("socket is connected!");
 });

 socket.on('data', function(data) {
 // To avoid slow browser response, don't output raw data. instead, print a
stat once some number of packets has been received. In this case, a stat is printed on

the browser once per 1000 haptic packets

 //the data received is put into the hapticMsgFromMaster global variable so it
is accessible from any scope

 hapticMsgFromMaster = data;
 if(timeCounter % 1000 == 0){
 log("Recv packet rate: \"" + packetRate + "\"");
 timeCounter = 0;
 packetRate = 0;

 }

 timeCounter++;
 packetRate++;
 });

 socket.on('close', function() {
 log("socket is disconnected!");
 });

 socket.on('error', function(err) {
 log("Error: " + err);
 });

 //Specific message type handlers

 socket.on('userInput', function(args) {
 log("Received user input: \"" + args['input'] + "\"");
 });

 // this functionality is used for basic haptic device movement test on
HAVnetSimulation

//packets listed within the message textarea are sent to the slave device whenever the

send button is clicked

 // basic left right movement. duration depends on computer performance.
 $('#send').click(function() {
 // Start an automated message.
 console.time("send time");
 // The sending functionality takes less than 1ms, so 1000 instruction can
easily be sent within 1 second

 var i;
 var movement_time = 250
 for (i = 0; i < movement_time; i++){
 socket.send($('#message').val(),
JSON.parse('{"_MESSAGE_":"data","hapticMessageM2S":[1, 0, -1, 0]}'));
 console.log("left");
 }

 for (i = 0; i < movement_time; i++){
 socket.send($('#message').val(),
JSON.parse('{"_MESSAGE_":"data","hapticMessageM2S":[1, 0, 1, 0]}'));
 console.log("right");
 }

 console.timeEnd("send time");
 });

 });

 //Once the websocket communication with the haptic device has been established then
get the audio visual media using WebRTC functions for AV data

 getMediaButton.disabled = true;
 createOfferButton.disabled = true;
 setOfferButton.disabled = true;
 createAnswerButton.disabled = true;
 setAnswerButton.disabled = true;
 offerSdpTextarea.value = '';
 answerSdpTextarea.value = '';
 offerSdpTextarea.disabled = true;
 answerSdpTextarea.disabled = true;

 //if there was a call going on already get rid of it
 //this will happen when let's say we choose another video source
 //so it has to get rid of the video that already exists

 if (localStream) {
 localVideo.srcObject = null;
 remoteVideo.srcObject = null;
 localStream.getTracks().forEach(track => track.stop());
 localChannel.close();
 remoteChannel.close();
 //Basically a data channel session needs to be closed if the communication is
restarted

 if (sessionEstablished) {

 sendChannel.close();
 receiveChannel.close();
 }

 }

 //get the selected audio and video sources and also log them
 const audioSource = audioSelect.value;
 console.log(`Selected audio source: ${audioSource}`);
 const videoSource = videoSelect.value;
 console.log(`Selected video source: ${videoSource}`);
 const hapticSource = hapticSelect.value;
 console.log(`Selected haptic source: ${hapticSource}`);

 const constraints = {
 audio: {
 optional: [{
 sourceId: audioSource
 }]

 },

 video: {
 optional: [{
 sourceId: videoSource
 }]

 }

 };

 console.log('Requested local stream');
 try {
 const userMedia = await navigator.mediaDevices.getUserMedia(constraints);

 gotStream(userMedia);//have received the local stream,
 //give it to the localstream DOM object and the variable

 }

 catch (e) {
 console.log('navigator.getUserMedia error: ', e);
 }

 }

 console.timeEnd("getMedia time");

//helper function for getMedia

 function gotStream(stream) {
 console.log('Received local stream');
 createPeerConnectionButton.disabled = false;
 localVideo.srcObject = stream;
 localStream = stream;
 }

 function createPeerConnection() {
 //disable the buttons/functions we don't wanna run

 createPeerConnectionButton.disabled = true;
 createOfferButton.disabled = false;

 hangupButton.disabled = false;
 //--
 console.log('Starting call');
 const videoTracks = localStream.getVideoTracks();
 const audioTracks = localStream.getAudioTracks();

 if (videoTracks.length > 0) {
 console.log(`Using video device: ${videoTracks[0].label}`);
 }

 if (audioTracks.length > 0) {
 console.log(`Using audio device: ${audioTracks[0].label}`);
 }

 console.log(`Using haptic device: NovintFalcon`); //hard coded dummy uncomment the
below code if using other haptic devices

 // if (hapticTracks.length > 0) {
 // console.log(`Using haptic device: ${hapticTracks[0].label}`);
 // }
 //--
 const servers = null; // we are not gonna use any STUN/TURN servers, localhost
 //creating a local peer connection
 window.localPeerConnection = localPeerConnection = new RTCPeerConnection(servers);
 console.log('Created local peer connection object localPeerConnection');
 localPeerConnection.onicecandidate = e => onIceCandidate(localPeerConnection, e);
 //--
 //creating two data channels and attaching them to the peer connection
 //localChannel is the control channel from the local node
 localChannel = localPeerConnection.createDataChannel('localDataChannel',
dataChannelOptions);
 //local data channel events and how to handle them
 localChannel.onopen = () => {
 console.log('local control data-channel is open');
 handShakeButton.disabled = false;
 //handshake can start now that the local channel is open
 };

 localChannel.onmessage = (event) => {
 console.log('The local peer has received a packet.',JSON.parse(event.data));
 let packet = JSON.parse(event.data);
 if (packet.type === "response"){
 let ack = makeAck();
 localChannel.send(JSON.stringify(ack));
 console.log('local peer has sent an acknowledgment.', ack);
 var datey = new Date();
 var sendacktime = datey.getTime();
 //If acknowledgement has been sent then the handshake is complete

//Hence, open the mediachannel

 OpenHapticMediaChannel();
 }

 };

 localChannel.onclose = () => {
 console.log(`local control data-channel is closed.`);
 };

 localChannel.onerror = (error) =>{
 console.log("Local Data Channel Error:", error);
 };

//opens the media channel once the control channel has finished the handshake

function OpenHapticMediaChannel(){
 //if (sessionEstablished){
 sendChannel = localPeerConnection.createDataChannel('sendDataChannel');

 sendChannel.onopen = () => {
 console.log('local haptic media data-channel is open');

 sendDataLoop = setInterval(IsendData, 1000);
 };

 sendChannel.onmessage = (event) => {
 console.log('Local received:- '+ event.data);
 };

 sendChannel.onclose = () => {
 clearInterval(sendDataLoop);
 console.log(`local haptic media data-channel is closed. Ciao :)`);
 };

 sendChannel.onerror = (error) => {
 clearInterval(sendDataLoop);
 console.log("Send Data Channel Error:", error);
 };

 }

 //--
 //--
 //creating a remote peer connection

//the exact same process from above but for the remote node

 window.remotePeerConnection = remotePeerConnection = new RTCPeerConnection(servers);
 console.log('Created remote peer connection object remotePeerConnection');
 remotePeerConnection.onicecandidate = e => onIceCandidate(remotePeerConnection, e);
 //--
 remotePeerConnection.ontrack = (e) => {
 if (remoteVideo.srcObject !== e.streams[0]) {
 remoteVideo.srcObject = e.streams[0];
 console.log('Received remote stream');
 }

 };

 localStream.getTracks().forEach(track => localPeerConnection.addTrack(track,
localStream));
 console.log('Adding Local Stream to peer connection');
 //--

 remoteChannel = remotePeerConnection.createDataChannel('remoteDataChannel',
dataChannelOptions);
 //remote data channel events and how to handle them
 remoteChannel.onopen = () => {
 console.log('remote control data-channel is open');
 console.log('Haptic Handshake can now start.');
 };

 remoteChannel.onmessage = (event) => {
 console.log('The remote peer has received a packet.' ,JSON.parse(event.data));
 let request = JSON.parse(event.data);
 if (request.type === "request"){
 let response = createResponse(request);
//if a request was received, make a response and send it to the local node

 sendFromOther(response);
 }

 };

 remoteChannel.onclose = () => {
 console.log(`remote control data-channel is closed.`);
 };

 remoteChannel.onerror = (error) =>{
 console.log("Remote control Data Channel Error:", error);
 };

 //--
 // if a datachannel was open from the local node then we also open a datachannel from
the remote node. This ensures the media data channel is open on both local and remote

nodes

 remotePeerConnection.ondatachannel = (event) => {
 receiveChannel = event.channel;
 receiveChannel.onopen = () => {
 console.log('remote haptic media data-channel is open');
 console.log('Haptic media communication will now start.');
 sendDataLoop2 = setInterval(TheysendData, 1000);
 };

 receiveChannel.onmessage = (event) => {
 console.log(`Remote received: ${event.data}`);
 };

 receiveChannel.onclose = () => {
 clearInterval(sendDataLoop2);
 console.log(`remote haptic media data-channel is closed. Ciao :)`);
 };

 receiveChannel.onerror = (error) => {
 clearInterval(sendDataLoop2);
 console.log("Receive Data Channel Error:", error);
 };

 };

 }

 //Dealing with ICE candidates
//connects the local and remote peer connection objects

 //--
 function getOtherPc(pc) {
 return (pc === localPeerConnection) ? remotePeerConnection : localPeerConnection;
 }

 function getName(pc) {
 return (pc === localPeerConnection) ? 'localPeerConnection' : 'remotePeerConnection';
 }

 async function onIceCandidate(pc, event) {
 try {
 // eslint-disable-next-line no-unused-vars
 const ignore = await getOtherPc(pc).addIceCandidate(event.candidate);
 onAddIceCandidateSuccess(pc);
 }

 catch (e) {
 onAddIceCandidateError(pc, e);
 }

 }

 function onAddIceCandidateSuccess() {
 console.log('AddIceCandidate success.');
 }

 function onAddIceCandidateError(error) {
 console.log(`Failed to add Ice Candidate: ${error.toString()}`);
 }

 //--
 //functions used to send messages from the two pairs of data channels

//sendFromMe is used by the local control channel to send request object

 function sendFromMe(){

 let requestTemp = {
 type: "request",
 sessionDescription: "v=0\r\no=- <sess-id add time stamp here> <sess-version add a
feature that counts everytime offer is created> IN IP4 127.0.0.1\r\ns=Haptic
SDP\r\ni=SDP for Haptic Handshake\r\nt= 0 0\r\na=<add attribute at the session
level>\r\n",
 mediaDescription: localHapticSDP,
 CodecParams: "file" //this can be replaced by codec parameters communicated from the
C++ environment

 }

 var request = addTS(requestTemp);
 var datex = new Date();
 var ReqSentTime = datex.getTime();
 //sending the request
 localChannel.send(JSON.stringify(request));
 console.log('The local peer has sent a request packet', request);

 }

//sendFromMe is used by the remote control channel to send response object

 function sendFromOther(response) {
 console.log('The remote peer has sent a response packet', response);
 remoteChannel.send(JSON.stringify(response));
 }

//IsendData is used by the local media channel to send haptic packets

 function IsendData() {
 if (sendChannel.readyState === 'open'){

 var message = hapticMsgFromMaster;
 sendChannel.send(message);
 console.log(`Local sent: ${message}`);
 }

 }

//TheysendData is used by the remote media channel to send haptic packets

//This example code shows the master client browser hence the remote node would be the

slave device. In this example dummy data is used since this code is specific to master.

A replicate of this would be done from the slave client browser

 function TheysendData() {
 if (receiveChannel.readyState === 'open'){
 var message = '-1,0,1';
 receiveChannel.send(message);
 console.log(`Remote sent: ${message}`);
 }

 }

 //--
 //function used to create offer
 async function createOffer() {
 setOfferButton.disabled = false;
//create the designed Haptic SDP manually and the AV SDP automatically through WebRTC

//based on the RFC docs for SDP

//hardcoded for Novint falcon

 localHapticSDP = "m=haptic: NovintFalcon <port number> SCTP/DTLS 1\r\ni=Novint
Falcon Haptic System\r\na=QoS_hapLatency: 10\r\na=QoS_hapJitter: 30\r\na=HapI_dof:
1\r\na=HapI_ws_x_y_z: -10 10 10\r\na=HapI_fr_x_y_z: -30 30 30\r\na=HapI_tr_x_y_z: -30 30
30\r\na=Hap_Deadband: 1\r\na=Hap_kinSampleRate: 1000\r\na=Hap_tacF: 251\r\na=QoS_hapR:
89.0001\r\na=UE_immersion: 0 (Bolean)\r\na=UE_collabortation: 0\r\na=UE_satisfaction:
0\r\na=UE_presence: 0\r\na=UA_0001 (add custom attributes here...)" ;
 try {
 const offer = await localPeerConnection.createOffer();

 //console.log(offer);
 orginalOfferSDP = offer.sdp;
 gotDescription1(offer);
 }

 catch (e) {//catch the exception incase something happens
 onCreateSessionDescriptionError(e); // this just prints the exception
 }

 }

 function gotDescription1(description) {
 offerSdpTextarea.disabled = false;
 //
 offerSdpTextarea.value = localHapticSDP;
 }

 function onCreateSessionDescriptionError(error) {
 console.log(`Failed to create session description: ${error.toString()}`);
 }

 //--
 async function setOffer() {
 createAnswerButton.disabled = false;
 let sdp = orginalOfferSDP;
 const offer = {
 type: 'offer',
 sdp: sdp
 };

 try {
 const ignore = await localPeerConnection.setLocalDescription(offer);
 onSetSessionDescriptionSuccess();
 }

 catch (e) {
 onSetSessionDescriptionError(e);
 }

 try {
 const ignore = await remotePeerConnection.setRemoteDescription(offer);
 onSetSessionDescriptionSuccess();
 }

 catch (e) {
 onSetSessionDescriptionError(e);
 }

 }

 function onSetSessionDescriptionSuccess() {
 console.log('Set session description success.');
 }

 function onSetSessionDescriptionError(error) {
 console.log(`Failed to set session description: ${error.toString()}`);
 }

 //--
 async function createAnswer() {
 // Since the 'remote' side has no media stream we need

 // to pass in the right constraints in order for it to
 // accept the incoming offer of audio and video.

 setAnswerButton.disabled = false;
 //this could be changed to be Omni or whatever, it's the devices SDP which is
hardcoded right now. This information would be filled from a device.

 //This is not currently modeled to be an answer. It's just a raw description of the
devices capabilities.

 remoteHapticSDP = "m=haptic: NovintFalcon <port number> SCTP/DTLS 1\r\ni=Novint
Falcon Haptic System\r\na=QoS_hapLatency: 15\r\na=QoS_hapJitter: 30\r\na=HapI_dof:
1\r\na=HapI_ws_x_y_z: -10 10 10\r\na=HapI_fr_x_y_z: -30 30 30\r\na=HapI_tr_x_y_z: -30 30
30\r\na=Hap_Deadband: 1\r\na=Hap_kinSampleRate: 1000\r\na=Hap_tacF: 251\r\na=QoS_hapR:
89.0001\r\na=UE_immersion: 0 (Bolean)\r\na=UE_collabortation: 0\r\na=UE_satisfaction:
1\r\na=UE_presence: 0\r\na=UA_0001 (add custom attributes here...)";
 try {
 const answer = await remotePeerConnection.createAnswer();
 orginalAnswerSDP = answer.sdp;
 gotDescription2(answer);
 }

 catch (e) {
 onCreateSessionDescriptionError(e);
 }

 }

 function gotDescription2(description) {
 answerSdpTextarea.disabled = false;
 //
 answerSdpTextarea.value = remoteHapticSDP;
 }

//--

 async function setAnswer() {
 let sdp = orginalAnswerSDP;
 const answer = {
 type: 'answer',
 sdp: sdp
 };

 try {

 const ignore = await remotePeerConnection.setLocalDescription(answer);
 onSetSessionDescriptionSuccess();
 }

 catch (e) {
 onSetSessionDescriptionError(e);
 }

 try {
 const ignore = await localPeerConnection.setRemoteDescription(answer);
 onSetSessionDescriptionSuccess();
 }

 catch (e) {
 onSetSessionDescriptionError(e);
 }

 }

 //--
 function hangup() {
 remoteVideo.srcObject = null;
 console.log('Ending call');
 localStream.getTracks().forEach(track => track.stop());

 sendChannel.close();
 receiveChannel.close();
 localChannel.close();
 remoteChannel.close();

 localPeerConnection.close();
 remotePeerConnection.close();
 offerSdpTextarea.value = '';
 answerSdpTextarea.value = '';
 offerSdpTextarea.disabled = true;
 answerSdpTextarea.disabled = true;
 getMediaButton.disabled = false;
 handShakeButton.disabled = true;
 createPeerConnectionButton.disabled = true;
 createOfferButton.disabled = true;
 setOfferButton.disabled = true;
 createAnswerButton.disabled = true;
 setAnswerButton.disabled = true;
 hangupButton.disabled = true;
 // localChannel = null;
 // remoteChannel = null;
 // sendChannel = null;
 // receiveChannel = null;
 // localPeerConnection = null;
 // remotePeerConnection = null;
 }

//--

 // funtions to process and manipulate the Haptic SDP
 function addTS(packet){
 let sessionDesc = packet.sessionDescription;
 let sessionArray = sessionDesc.split("\r\n")
 let parseOrigin = sessionArray[1].split(" ")
 var date = new Date();
 parseOrigin[1] = date.getTime();
 sessionArray[1] = parseOrigin.join(" ");
 packet.sessionDescription = sessionArray.join("\r\n");

 return(packet);
 }

 // Receives the request object and compares it to the standard "haptic sdp" object
 // existing on the current side of the network and creates a response that caters to
the

 // specifications of the haptic devices on both sides.
 function createResponse(object1){
 // Ken - Haptic Response object simulated as if it was read from a file.
 let Hap_Standard = {
 type: "request",
 sessionDescription: "v=0\r\no=- <sess-id add time stamp here> <sess-version add a
feature that counts everytime offer is created> IN IP4 127.0.0.1\r\ns=Haptic
SDP\r\ni=SDP for Haptic Handshake\r\nt= 0 0\r\na=<add attribute at the session
level>\r\n",
 mediaDescription: remoteHapticSDP,
 CodecParams: "file",
 };

 let object2 = Hap_Standard;
 // confusing. replace sdp11 with HSDPmediaDescription.
 // splits HSDPmediaDescription content into array of entries.
 let sdp11 = object1.mediaDescription
 let sdp1 = sdp11.split("\r\n");
 let sdp22 = object2.mediaDescription
 let sdp2 = sdp22.split("\r\n");

 // makes sure that the value of all the parameters in the request
 // are received and that the standard are digits. If not, it throws an error
 if(checkNum(sdp2)===true || checkNum(sdp1)===true){
 return;
 }

//==

============

 // Checking (manual indexing for now) if contents of both local and remote
 // HSDPmediaDescription object aligns with the specification.

//==

============

 // makes sure that all the required parameters exist in both
 // request and standard at a specific location in the string
 try{

 if((splitSDP(sdp1[0]))[0]!=="m=haptic:" || (splitSDP(sdp2[0]))[0]!=="m=haptic:")
{

 throw "Error creating response: Media not recognized"
 }

 }

 catch(err){
 console.error(err);
 return
 }

 try{
 if((splitSDP(sdp1[2]))[0]!=="a=QoS_hapLatency:" ||
(splitSDP(sdp2[2]))[0]!=="a=QoS_hapLatency:" || isNaN((splitSDP(sdp1[2]))[1]) ||
isNaN((splitSDP(sdp2[2]))[1])) throw "Error creating response: Cannot read latency"
 }

 catch(err){
 console.error(err);
 return
 }

 try{
 if((splitSDP(sdp1[3]))[0]!=="a=QoS_hapJitter:" ||
(splitSDP(sdp2[3]))[0]!=="a=QoS_hapJitter:" || isNaN((splitSDP(sdp1[3]))[1]) ||
isNaN((splitSDP(sdp2[3]))[1])) throw "Error creating response: Cannot read jitter"
 }

 catch(err){
 console.error(err);
 return
 }

 try{
 if((splitSDP(sdp1[4]))[0]!=="a=HapI_dof:" || (splitSDP(sdp2[4]))[0]!=="a=HapI_dof:"
|| isNaN((splitSDP(sdp1[4]))[1]) || isNaN((splitSDP(sdp2[4]))[1])) throw "Error creating
response: Cannot read dof"

 }

 catch(err){
 console.error(err);
 return
 }

 try{
 if((splitSDP(sdp1[5]))[0]!=="a=HapI_ws_x_y_z:" ||
(splitSDP(sdp2[5]))[0]!=="a=HapI_ws_x_y_z:" || isNaN((splitSDP(sdp1[5]))[1]) ||
isNaN((splitSDP(sdp2[5]))[2]) || isNaN((splitSDP(sdp2[5]))[3])) throw "Error creating
response: Cannot read workspace"

 }

 catch(err){
 console.error(err);
 return
 }

 try{
 if((splitSDP(sdp1[6]))[0]!=="a=HapI_fr_x_y_z:" ||
(splitSDP(sdp2[6]))[0]!=="a=HapI_fr_x_y_z:" || isNaN((splitSDP(sdp1[5]))[1]) ||
isNaN((splitSDP(sdp2[6]))[2]) || isNaN((splitSDP(sdp2[6]))[3]) ||
isNaN((splitSDP(sdp2[6]))[3])) throw "Error creating response: Cannot read force range"
 }

 catch(err){

 console.error(err);
 return
 }

 try{
 if((splitSDP(sdp1[7]))[0]!=="a=HapI_tr_x_y_z:" ||
(splitSDP(sdp2[7]))[0]!=="a=HapI_tr_x_y_z:" || isNaN((splitSDP(sdp1[7]))[1]) ||
isNaN((splitSDP(sdp2[7]))[2]) || isNaN((splitSDP(sdp2[7]))[3])) throw "Error creating
response: Cannot read torque range"

 }

 catch(err){
 console.error(err);
 return
 }

 try{
 if((splitSDP(sdp1[8]))[0]!=="a=Hap_Deadband:" ||
(splitSDP(sdp2[8]))[0]!=="a=Hap_Deadband:" || isNaN((splitSDP(sdp1[8]))[1]) ||
isNaN((splitSDP(sdp2[8]))[1])) throw "Error creating response: Cannot read deadband"
 }

 catch(err){
 console.error(err);
 return
 }

 try{
 if((splitSDP(sdp1[9]))[0]!=="a=Hap_kinSampleRate:" ||
(splitSDP(sdp2[9]))[0]!=="a=Hap_kinSampleRate:" || isNaN((splitSDP(sdp2[9]))[1]) ||
isNaN((splitSDP(sdp1[9]))[1])) throw "Error creating response: Cannot read kinetic
sample rate"

 }

 catch(err){
 console.error(err);
 return
 }

 try{
 if((splitSDP(sdp1[10]))[0]!=="a=Hap_tacF:" ||
(splitSDP(sdp2[10]))[0]!=="a=Hap_tacF:" || isNaN((splitSDP(sdp1[10]))[1]) ||
isNaN((splitSDP(sdp2[10]))[1])) throw "Error creating response: Cannot read tactile
frequency"

 }

 catch(err){
 console.error(err);
 return
 }

 // finds all parameters in the request or standard that do not have a match
 Array.prototype.diff = function(a) {
 return this.filter(function(i) {return a.indexOf(i) < 0;});
 };

 // i.e. dif1 will contain content of sdp1 that didn't match that of sdp2
 var dif1 = sdp1.diff(sdp2);
 var dif2 = sdp2.diff(sdp1);
 let difFin = [];

 // stores the statement that exists on one side only. This string can
 // be different because of the different value of the parameter of because of
 // an odd parameter that does not exist on the other side
 for (var i = 0; i < dif1.length; i++){
 for (var j = 0; j < dif2.length; j++){
 let difx1 = dif1[i].split(" ");
 let difx2 = dif2[j].split(" ");
 if (difx1[0]=== difx2[0]) {
 difFin = difFin.concat(dif1[i],dif2[j]);
 //dif1.splice(i,1);
 dif2.splice(j,1);
 }

 }

 }

 //This loop is used to remove that extra array from the response that exists on one
side only.

 for(var d=0; d<dif2.length; d++){
 for (var s=0; s<sdp2.length;s++){
 if(dif2[d]===sdp2[s]){
 sdp2.splice(s,1);
 }

 }

 }

 //console.log(difFin);
 var mhap, latency, jitter, reli, immer, collab, satis, pres, deadband, kinSamp,
tacFreq, dof, UA_1;
 var indexElement;

 // modifies the parameters of the response if they exist in both request and standard
 // but have different values. It sets the value such that the specifications of
haptic devices

 // on both sides are met.
 for(var a=0; a < difFin.length; a+=2){
 let val = difFin[a];
 let val2 = difFin[a+1];
 // corresponds to the part after the '=' sign in each mediaDescription entry.
 let value = difFin[a].substring(2,10);
 // value2 = difFin[a+1].substring(2,10);

 switch(value){
 case "haptic: ":
 let Hap_array2 = val2.split(" ")

 // Finds the haptic device that exists on the requester's side
 console.log("Connecting to a " + String(Hap_array2[1]));
 break;
 case "QoS_hapL":
 latency = String(chooseGreater(val,val2)[0]);
 indexElement = changeMediaDescrip(sdp2,"QoS_hapL");
 sdp2[indexElement] = "a=QoS_hapLatency: " + latency;
 // Modifies the limit set for latency that works for haptic devices on both sides
 console.log("Updated Response Haptic SDP in QoS_hapLatency to " + latency);
 break;
 case "QoS_hapJ":
 jitter = String(chooseGreater(val,val2)[0]);
 indexElement = changeMediaDescrip(sdp2,"QoS_hapJ");
 sdp2[indexElement] = "a=QoS_hapJitter: " + jitter;
 console.log("Updated Response Haptic SDP in QoS_hapJitter to " + jitter);
 console.log(sdp2);
 break;
 case "QoS_hapR":
 reli = String(chooseSmaller(val,val2)[0]);
 indexElement = changeMediaDescrip(sdp2,"QoS_hapR");
 sdp2[indexElement] = "a=QoS_hapReliability: " + reli;
 console.log("Updated Response Haptic SDP in QoS_hapReliability to " + reli);
 break;
 case "UE_immer":

 immer = 0; //this only happens when they are different, so response is set to
zero

 indexElement = changeMediaDescrip(sdp2,"UE_immer");
 sdp2[indexElement] = "a=UE_immersion " + String(immer);
 console.log("Updated Response Haptic SDP in UE_immersion to " + String(immer));
 break;
 case "UE_colla":

 collab = 0;
 indexElement = changeMediaDescrip(sdp2,"UE_colla");
 sdp2[indexElement] = "a=UE_collabortation: " + String(collab);
 console.log("Updated Response Haptic SDP in UE_colla to " + String(collab));
 break;
 case "UE_satis":

 satis = 0;
 indexElement = changeMediaDescrip(sdp2,"UE_satis");
 sdp2[indexElement] = "a=UE_satisfaction: " + String(satis);
 console.log("Updated Response Haptic SDP in UE_satisfaction to " + String(satis));
 break;
 case "UE_prese":

 pres = 0;

 indexElement = changeMediaDescrip(sdp2,"UE_prese");
 sdp2[indexElement] = "a=UE_presence: " + String(pres);
 console.log("Updated Response Haptic SDP in UE_presence to " + String(pres));
 break;
 case "Hap_Dead":
 array1 = val.split(" ") ;
 array2 = val2.split(" ");
 deadband = array1[1];
 indexElement = changeMediaDescrip(sdp2,"Hap_Dead");
 sdp2[indexElement] = "a=Hap_Deadband: " + String(deadband);
 console.log("Updated Response Haptic SDP in Hap_Dead to ") + String(deadband);
 break;
 case "Hap_kinS":
 kinSamp = chooseSmaller(val,val2)[0];
 indexElement = changeMediaDescrip(sdp2,"Hap_kinS");
 sdp2[indexElement] = "a=Hap_kinSampleRate: " + String(kinSamp);
 console.log("Updated Response Haptic SDP in Hap_kinS to " + String(kinSamp));
 break;
 case "Hap_tacF":

 tacFreq = chooseSmaller(val,val2)[0];
 indexElement = changeMediaDescrip(sdp2,"Hap_tacF");
 sdp2[indexElement] = "a=Hap_tacFequency: " + String(tacFreq);
 console.log("Updated Response Haptic SDP in HapI_tacF to " + String(tacFreq));
 break;
 case "HapI_dof":

 dof = chooseSmaller(val,val2)[0];
 indexElement = changeMediaDescrip(sdp2,"HapI_dof");
 sdp2[indexElement] = "a=HapI_dof: " + String(dof);
 console.log("Updated Response Haptic SDP in HapI_dof to " + String(dof));
 break;
 case "HapI_ws_":
 let ws_xyz = chooseSmaller(val,val2);
 indexElement = changeMediaDescrip(sdp2,"HapI_ws_");
 sdp2[indexElement] = "a=HapI_ws_x_y_z: " + String(ws_xyz[0] + " " +
String(ws_xyz[1]) + " " + String(ws_xyz[2]));
 console.log("Updated Response Haptic SDP in HapI_ws_ to " + String(ws_xyz[0] + " "
+ String(ws_xyz[1]) + " " + String(ws_xyz[2])));
 break;
 case "HapI_fr_":

 let fr_xyz = chooseSmaller(val,val2)
 indexElement = changeMediaDescrip(sdp2,"HapI_fr_");
 sdp2[indexElement] = "a=HapI_fr_x_y_z: " + String(fr_xyz[0] + " " +
String(fr_xyz[1]) + " " + String(fr_xyz[2]));
 console.log("Updated Response Haptic SDP in HapI_fr_ to " + String(fr_xyz[0] + " "
+ String(fr_xyz[1]) + " " + String(fr_xyz[2])));
 break;

 case "HapI_tr_":

 let tr_xyz = chooseSmaller(val,val2)
 indexElement = changeMediaDescrip(sdp2,"HapI_tr_");
 sdp2[indexElement] = "a=HapI_tr_x_y_z: " + String(tr_xyz[0] + " " +
String(tr_xyz[1]) + " " + String(tr_xyz[2]));
 console.log("Updated Response Haptic SDP in HapI_tr_ to " + String(tr_xyz[0] + " "
+ String(tr_xyz[1]) + " " + String(tr_xyz[2])));
 break;
 case "UA_0001 ":

 //This space is for the user to add custom attributes.
 break;
 }

 }

 let resp_med_desc = sdp2.join("\r\n");

 // creates response
 let response ={
 type: "response",
 sessionDescription: "v=0\r\no=- <sess-id add time stamp here> <sess-version add a
feature that counts everytime offer is created> IN IP4 127.0.0.1\r\ns=Haptic
SDP\r\ni=SDP for Haptic Handshake\r\nt= 0 0\r\na=<add attribute at the session
level>\r\n",
 mediaDescription: resp_med_desc,
 CodecParams: object1.CodecParams,
 }

 console.log("A response was created by remote peer", response);
 return response;
 }

 function splitSDP(array){
 let final = array.split(" ");
 return(final)
 }

 function checkNum(numArray){
 var val = false;
 for (var r=11;r<numArray.length-1;r++){
 if (isNaN(splitSDP(numArray[r])[1]))
 {

 val = true;
 console.error("Error: Value of " + String(splitSDP(numArray[r])[0]) + " is not a
number")
 }

 }

 return val;
 }

 function changeMediaDescrip(descripArray, checkSTR){ //Changes the Media Description
for the Response

 var index, result, value;
 for (index = 0; index < descripArray.length; ++index) {

 value = descripArray[index];
 if (value.substring(2, 10) === checkSTR) {
 break;
 }

 }

 return index;
 }

 function chooseSmaller(arr1,arr2){

 let array1 = arr1.split(" ") ;
 let array2 = arr2.split(" ");
 let choice = [];
 for (var i= 1 ; i < array1.length ; ++i){
 (array1[i] > array2[i]) ? choice.push(array2[i]) : choice.push(array1[i]);
 }

 return choice;
 }

 function chooseGreater(arr1,arr2){
 let array1 = arr1.split(" ") ;
 let array2 = arr2.split(" ");
 let choice = [];
 for (var i= 1 ; i < array1.length ; ++i){
 (array1[i] > array2[i]) ? choice.push(array1[i]) : choice.push(array2[i]);
 }

 return choice;
 }

 function makeAck(){
 // this function is called when the response received by a side and it wants to send
an acknowledgment back

 let ackTemp = {
 type: "ack",
 //The hapticSDP for response needs to be changed. It should only include the
specifications that match with the specs of request

 sessionDescription: "v=0\r\no=- timeStamp sessionVersionCounter IN IP4
127.0.0.1\r\ns=Haptic SDP\r\ni=SDP for Haptic Handshake\r\nt= 0 0\r\na=<add attribute at
the session level>\r\n",
 message: "The Haptic Handshake is established.",
 }

 let ack = addTS(ackTemp);
 sessionEstablished = true;
 console.log("Local Peer has created an acknowledgment packet", ack);
 return(ack);
 }

}

console.timeEnd("init time");

12.2 C++ Master Code

70

/#include "commTool.h"
#include "config.h"
#include "HapticCommLib.h"

#include <string.h>
#include <stdlib.h>

#include "chai3d.h"
#include "CBullet.h"
using namespace chai3d;

//--
// Read Parameters from configuration file
//--
//set manually for now

ConfigFile cfg("cfg/config.cfg"); // get the configuration file
double VelocityDeadbandParameter =
cfg.getValueOfKey<double>("VelocityDeadbandParameter"); //deadband parameter for velcity
data reduction, 0.1 is the default value
double PositionDeadbandParameter =
cfg.getValueOfKey<double>("PositionDeadbandParameter"); //deadband parameter for position
data reduction, 0.1 is the default value
double CommandDelay = cfg.getValueOfKey<double>("CommandDelay");

std::string IP_master = cfg.getValueOfKey<std::string>("MasterIP");
std::string IP_slave = cfg.getValueOfKey<std::string>("SlaveIP");

DeadbandDataReduction* DBVelocity; // data reduction class for velocity samples
DeadbandDataReduction* DBPosition; // data reduction class for position samples

bool VelocityTransmitFlag = false; // true: deadband triger false: keep last recently transmitted
sample (ZoH)
bool PositionTransmitFlag = false; // true: deadband triger false: keep last recently transmitted
sample (ZoH)

// TDPA variable
double MasterForce[3] = { 0.0, 0.0, 0.0 };
double MasterVelocity[3] = { 0.0, 0.0, 0.0 }; // update 3 DoF master velocity sample (holds the
signal before deadband)
double MasterPosition[3] = { 0.0, 0.0, 0.0 }; // update 3 DoF master position sample (holds the
signal before deadband)

//--
// DECLARED VARIABLES
//--

// a haptic device handler
cHapticDeviceHandler* handler;

// a pointer to the current haptic device
cGenericHapticDevicePtr hapticDevice;

// a virtual tool representing the haptic device in the scene
cToolCursor* tool;

// a flag to indicate if the haptic simulation currently running
bool simulationRunning = false;

// a flag to indicate if the haptic simulation has terminated
bool simulationFinished = true;

// a frequency counter to measure the simulation haptic rate
cFrequencyCounter freqCounterHaptics;

// haptic thread
cThread* hapticsThread;

LARGE_INTEGER cpuFreq;
double delay = 0;
//--
// DECLARED FUNCTIONS
//--

// updateHaptics() takes server class as an argument
// this function contains the main haptics simulation loop
void updateHaptics(void);

// this function closes the application
void close(void);

//--
// DECLARED VARIABLES
//--

// a world that contains all objects of the virtual environment
cBulletWorld* world;

// a frequency counter to measure the simulation graphic rate
cFrequencyCounter freqCounterGraphics;

cHapticDeviceInfo Falcon = {

C_HAPTIC_DEVICE_FALCON,
"Novint Technologies",
"Falcon",
8.0, // [N]
0.0, // [N*m]
0.0, // [N]

3000.0, // [N/m]
0.0, // [N*m/Rad]
0.0, // [N*m/Rad]
20.0, // [N/(m/s)]
0.0, // [N*m/(Rad/s)]
0.0, // [N*m/(Rad/s)]
0.04, // [m]
cDegToRad(0.0),
true,
false,
false,
true,
false,
false,
true,
true

};

#include "WebsocketServer.h"
#include <iostream>
#include <thread>
#include <asio/io_service.hpp>

//The port number the WebSocket server listens on
#define PORT_NUMBER 8080

int main(int argc, char* argv[])
{

//to keep static screen

//--
// INITIALIZATION
//--
std::cout << "-----------------------------------" << std::endl;
std::cout << "Teleoperation" << std::endl;
std::cout << "-----------------------------------" << std::endl;

std::cout << "-----------------------------------" << std::endl;
std::cout << "Master" << std::endl;
std::cout << "-----------------------------------" << std::endl;

// initialized deadband classes for force and velocity IP_master.data() IP_slave.data()
DBVelocity = new DeadbandDataReduction(VelocityDeadbandParameter);
DBPosition = new DeadbandDataReduction(PositionDeadbandParameter);

QueryPerformanceFrequency(&cpuFreq);
std::cout << "CPU freq: " << (double)cpuFreq.QuadPart / 1000 << std::endl;

//--
// WORLD AND HAPTIC DEVICE
//--

// create a new world.
world = new cBulletWorld();

// create a haptic device handler
handler = new cHapticDeviceHandler();

// get a handle to the first haptic device
handler->getDevice(hapticDevice, 0);

// create a tool (cursor) and insert into the world
tool = new cToolCursor(world);

// connect the haptic device to the tool
tool->setHapticDevice(hapticDevice);

// start the haptic tool - necessary
tool->start();

//--
// create message sender used to control delay and send message
//--

// create a thread which starts the main haptics rendering loop
hapticsThread = new cThread();

hapticsThread->start(updateHaptics, CTHREAD_PRIORITY_HAPTICS);

// setup callback when application exits
atexit(close);

////keeps program running until any key is pressed
system("pause");

return 0;
}

//===
// functions from HapticMaster for the server
//===

void close(void)
{

// stop the simulation
simulationRunning = false;

// wait for haptics loop to terminate
while (!simulationFinished) { cSleepMs(100); }

// close haptic device
tool->stop();

// delete resources
delete hapticsThread;
delete world;
delete handler;

}

void updateHaptics(void)
{

//==
============

// Code from websocket-server-demo

//==
============

//Create the event loop for the main thread, and the WebSocket server
asio::io_service mainEventLoop;
WebsocketServer server;

// Websocket-server-demo uses lambda function in order to send message upon

connection, disconnection, messaging, and instantiating
// serverThread and inputThread.

//Register our network callbacks, ensuring the logic is run on the main thread's event loop

server.connect([&mainEventLoop, &server](ClientConnection conn)
{

mainEventLoop.post([conn, &server]()
{

std::clog << "Connection opened. There are now " <<
server.numConnections() << " open connections." << std::endl;

//Send a hello message to the client
server.sendMessage(conn, "hello", Json::Value());

});
});
server.disconnect([&mainEventLoop, &server](ClientConnection conn)
{

mainEventLoop.post([conn, &server]()
{

std::clog << "Connection closed. There are now " << server.numConnections()
<< " open connections." << std::endl;

});
});
server.message("message", [&mainEventLoop, &server](ClientConnection conn, const

Json::Value& args)
{

mainEventLoop.post([conn, args, &server]()
{

std::clog << "message handler on the main thread: payload:" << std::endl;
std::cout << args << std::endl;

});
});

//Start the networking thread
std::thread serverThread([&server]() {

server.run(PORT_NUMBER);
});

Start reading and writing haptic data from\to the master haptic device.
std::thread inputThread([&server, &mainEventLoop]()
{

//===
initializations
simulationRunning = true;
simulationFinished = false;

int time_counter = 0;

//===

//==
===================

//Ensures communication stat to be printed on a new line.
bool firstprint = true;

while (simulationRunning)
{

time_counter++;

///
// READ HAPTIC DEVICE
///

// update position and orientation of tool

tool->updateFromDevice();

// read position
cVector3d position = tool->getDeviceLocalPos();
// read linear velocity
cVector3d linearVelocity;
hapticDevice->getLinearVelocity(linearVelocity);

 // update the variables with the newly read values
MasterVelocity[0] = MasterVelocity[1] = MasterVelocity[2] = 0.0;
for (int i = 0; i < 3; i++)
{

MasterVelocity[i] = linearVelocity(i);
MasterPosition[i] = position(i);

}

if (time_counter < 100)
MasterVelocity[0] = MasterVelocity[1] = MasterVelocity[2] = 0.0;

// Apply deadband on velocity
DBVelocity->GetCurrentSample(MasterVelocity);
DBVelocity->ApplyZOHDeadband(MasterVelocity, &VelocityTransmitFlag);

#pragma region create message and send it

///
// create message to send
///

hapticMessageM2S msgM2S;
for (int i = 0; i < 3; i++) {

msgM2S.position[i] = MasterPosition[i];//modified by TDPA

msgM2S.linearVelocity[i] = MasterVelocity[i];//modified by TDPA
}

__int64 curtime;
QueryPerformanceCounter((LARGE_INTEGER*)& curtime);
msgM2S.timestamp = curtime;

//==
==========

//Broadcast the input to all connected clients (is sent on the network thread)
Json::Value payload;

// there are 33 fields in hapticMessageM2S.

// sample stringified JSON object for testing websocketpp on slave-browser
system.

/

{"_MESSAGE_":"data","hapticMessageM2S":[4377508300697,-0.020581520991381136,-0.00806609
7465685023,0.040221096070821034,2.1244822771173601e-322,1.6714049593151536e-293,0.0,9.905
1321773382024e-315,7.5261082099078563e-313,5.0057480953748278e-291,1.3559553104480538e-3
11,0.0,0.0,1.7111774058343956e-310,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0,0,0,0,0]}

*/
 // haptic packet Master to Slave creation
int i = 0;

payload["hapticMessageM2S"][0] = msgM2S.timestamp;
//index 1~3
for (int i = 0; i < 3; i++) {

payload["hapticMessageM2S"][i + 1] = msgM2S.position[i];
}
//index 4~12
for (int i = 0; i < 9; i++) {

payload["hapticMessageM2S"][i + 4] = msgM2S.rotation[i];
}
payload["hapticMessageM2S"][13] = msgM2S.gripperAngle;
//index 14~16
for (int i = 0; i < 3; i++) {

payload["hapticMessageM2S"][i + 14] = msgM2S.linearVelocity[i];
}
//index 17~19
for (int i = 0; i < 3; i++) {

payload["hapticMessageM2S"][i + 17] = msgM2S.angularVelocity[i];
}
payload["hapticMessageM2S"][20] = msgM2S.gripperAngularVelocity;
payload["hapticMessageM2S"][21] = msgM2S.userSwitches;
//index 22~24
for (int i = 0; i < 3; i++) {

payload["hapticMessageM2S"][i + 22] = msgM2S.energy[i];
}
//index 25~27
for (int i = 0; i < 3; i++) {

payload["hapticMessageM2S"][i + 25] = msgM2S.waveVariable[i];
}
payload["hapticMessageM2S"][28] = msgM2S.button0;
payload["hapticMessageM2S"][29] = msgM2S.button1;
payload["hapticMessageM2S"][30] = msgM2S.button2;
payload["hapticMessageM2S"][31] = msgM2S.button3;
payload["hapticMessageM2S"][32] = msgM2S.ATypeChange;

//send the haptic packet to all connected clients
server.broadcastMessage("data", payload);

//==
==========

#pragma endregion

//-------packet rate------------
if (time_counter % 1000 == 0)
{

// Ensures communication stat to be printed on a new line.
if (firstprint) {

std::cout << std::endl;
firstprint = false;

}

}

//==
=================

//Start the event loop for the main thread
asio::io_service::work work(mainEventLoop);
mainEventLoop.run();

// exit haptics thread
simulationFinished = true;

}

12.3 C++ Slave Code

80

#include "commTool.h"
#include "config.h"
#include "HapticCommLib.h"

//===
// Exclusive to HapticSlave
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
//===

#include <string.h>
#include <stdlib.h>

#include "chai3d.h"
#include "CBullet.h"
using namespace chai3d;

//--
// Read Parameters from configuration file
//--
//set manually for now

ConfigFile cfg("cfg/config.cfg"); // get the configuration file

//===
// Exclusive to HapticSlave
double ForceDeadbandParameter = cfg.getValueOfKey<double>("ForceDeadbandParameter");
//deadband parameter for force data reduction, 0.1 is the default value
double ForceDelay = cfg.getValueOfKey<double>("ForceDelay");
int ControlMode = cfg.getValueOfKey<int>("ControlMode"); // 0: position control, 1:velocity
control
//===

double VelocityDeadbandParameter =
cfg.getValueOfKey<double>("VelocityDeadbandParameter"); //deadband parameter for velcity
data reduction, 0.1 is the default value
double PositionDeadbandParameter =
cfg.getValueOfKey<double>("PositionDeadbandParameter"); //deadband parameter for position
data reduction, 0.1 is the default value
double CommandDelay = cfg.getValueOfKey<double>("CommandDelay");

std::string IP_master = cfg.getValueOfKey<std::string>("MasterIP");
std::string IP_slave = cfg.getValueOfKey<std::string>("SlaveIP");

//===
// Exclusive to HapticSlave
DeadbandDataReduction* DBForce; // data reduction class for force samples
//===

DeadbandDataReduction* DBVelocity; // data reduction class for velocity samples
DeadbandDataReduction* DBPosition; // data reduction class for position samples

//===
// Exclusive to HapticSlave
bool ForceTransmitFlag = false; // true: deadband triger false: keep last recently transmitted
sample (ZoH)
//===

bool VelocityTransmitFlag = false; // true: deadband triger false: keep last recently transmitted
sample (ZoH)
bool PositionTransmitFlag = false; // true: deadband triger false: keep last recently transmitted
sample (ZoH)

// TDPA variable
double MasterForce[3] = { 0.0, 0.0, 0.0 };
double MasterVelocity[3] = { 0.0, 0.0, 0.0 }; // update 3 DoF master velocity sample (holds the
signal before deadband)
double MasterPosition[3] = { 0.0, 0.0, 0.0 }; // update 3 DoF master position sample (holds the
signal before deadband)

//===
// Exclusive to HapticSlave
//--
// Teleoperation control
//--
double xsd[3] = { 0, 0, 0 }; //desired slave position
double xs[3] = { 0, 0, 0 }; //actual slave position
double fs_prev[3] = { 0,0,0 }; //slave force from last time stamp
double xs_err_prev[3] = { 0,0,0 }; //previous position error from last time stamp
double A = 0, B = 0, C = 0; //control factor A, B, C. PD controller with IIR filter
//===

//--
// DECLARED VARIABLES
//--

// a world that contains all objects of the virtual environment
cBulletWorld* world;

// a haptic device handler
cHapticDeviceHandler* handler;

// a pointer to the current haptic device
cGenericHapticDevicePtr hapticDevice;

// a virtual tool representing the haptic device in the scene
cToolCursor* tool;

// a flag to indicate if the haptic simulation currently running
bool simulationRunning = false;

// a flag to indicate if the haptic simulation has terminated
bool simulationFinished = true;

// a frequency counter to measure the simulation haptic rate
cFrequencyCounter freqCounterHaptics;

// a frequency counter to measure the simulation graphic rate
cFrequencyCounter freqCounterGraphics;

// haptic thread
cThread* hapticsThread;

LARGE_INTEGER cpuFreq;

cHapticDeviceInfo Falcon = {

C_HAPTIC_DEVICE_FALCON,
"Novint Technologies",
"Falcon",
8.0, // [N]
0.0, // [N*m]
0.0, // [N]
3000.0, // [N/m]
0.0, // [N*m/Rad]
0.0, // [N*m/Rad]
20.0, // [N/(m/s)]
0.0, // [N*m/(Rad/s)]
0.0, // [N*m/(Rad/s)]
0.04, // [m]
cDegToRad(0.0),
true,
false,
false,
true,
false,
false,
true,
true

};

bool startFlag = false;

//--
// DECLARED FUNCTIONS
//--

// this function contains the main haptics simulation loop
void updateHaptics(void);

// this function closes the application
void close(void);

//===
// Exclusive to HapticSlave

void deviceInit(double, double, double, cGenericHapticDevicePtr);

//---
// DECLARED MACROS
//---
// convert to resource path
#define RESOURCE_PATH(p) (char*)((resourceRoot+string(p)).c_str())

//===
// Header files used by Websocketpp
//===
#include "WebsocketServer.h"
#include <iostream>
#include <thread>
#include <asio/io_service.hpp>

//The port number the WebSocket server listens on
#define PORT_NUMBER 8080

int main()
{

//--
// INITIALIZATION
//--
std::cout << "-----------------------------------" << std::endl;
std::cout << "Teleoperation (Slave Side)" << std::endl;
std::cout << "-----------------------------------" << std::endl;

// initialized deadband classes for force and velocity IP_master.data() IP_slave.data()
DBVelocity = new DeadbandDataReduction(VelocityDeadbandParameter);
DBPosition = new DeadbandDataReduction(PositionDeadbandParameter);

// Exclusive to HapticSlave
DBForce = new DeadbandDataReduction(ForceDeadbandParameter);
//--

QueryPerformanceFrequency(&cpuFreq);
std::cout << "CPU freq: " << (double)cpuFreq.QuadPart / 1000 << std::endl;

//--
// WORLD AND HAPTIC DEVICE
//--

// create a new world.
world = new cBulletWorld();

// create a haptic device handler
handler = new cHapticDeviceHandler();

//Note that master device corresponds to 0 and slave device corresponds to 1
handler->getDevice(hapticDevice, 1);

//initialize haptic device
deviceInit(0.0, 0.0, 0.0, hapticDevice);

// create a tool (cursor) and insert into the world
tool = new cToolCursor(world);

// connect the haptic device to the tool
tool->setHapticDevice(hapticDevice);

// start the haptic tool - necessary
tool->start();

//--
// create message sender used to control delay and send message. Then, simulation starts.
//--

// create a thread which starts the main haptics rendering loop
hapticsThread = new cThread();

hapticsThread->start(updateHaptics, CTHREAD_PRIORITY_HAPTICS);

// setup callback when application exits
atexit(close);

// keeps program running until any key is pressed
system("pause");

return 0;
}

void close(void)
{

// stop the simulation

simulationRunning = false;

// wait for graphics and haptics loops to terminate
while (!simulationFinished) { cSleepMs(100); }

// close haptic device
tool->stop();

// delete resources
delete hapticsThread;
delete world;
delete handler;

}

void updateHaptics(void)
{

 //Create the event loop for the main thread, and the WebSocket server
asio::io_service mainEventLoop;
WebsocketServer server;

server.connect([&mainEventLoop, &server](ClientConnection conn)
{

mainEventLoop.post([conn, &server]()
{

std::clog << "Connection opened. There are now " <<
server.numConnections() << " open connections." << std::endl;

//Send a hello message to the client
server.sendMessage(conn, "hello", Json::Value());

});
});
server.disconnect([&mainEventLoop, &server](ClientConnection conn)
{

mainEventLoop.post([conn, &server]()
{

std::clog << "Connection closed. There are now " << server.numConnections()
<< " open connections." << std::endl;

});
});
server.message("message", [&mainEventLoop, &server](ClientConnection conn, const

Json::Value& args)
{

int time_counter = 0;

mainEventLoop.post([conn, args, &server, &time_counter]()
{

if (!startFlag)
{

std::cout << "first commands received! " << std::endl;

startFlag = true;

cVector3d tempPos;
hapticDevice->getPosition(tempPos);
for (int i = 0; i < 3; ++i)
{

xs[i] = xsd[i] = tempPos(i);
}

}

hapticMessageM2S msgM2S;

//need a converter from const Json:: Value to double
//first Json:: Value to string
//string to double
std::string::size_type sz;

//index 0- timestamp
msgM2S.timestamp = std::stod(args["hapticMessageM2S"][0].asString(), &sz);

// for now the parameters that are not used are not being read
// only the linear velocity and position are read

//read the linear velocity from the received packet into the msgM2S structure
for (int i = 0; i < 3; i++) {

msgM2S.linearVelocity[i] = std::stod(args["hapticMessageM2S"][i +
1].asString(), &sz);

}

// for now the parameters that are not used are not being read
// only the linear velocity and position are read

// read linear velocity into a chai3d vector
cVector3d linearVelocity(msgM2S.linearVelocity[0], msgM2S.linearVelocity[1],

msgM2S.linearVelocity[2]);

// saving linear velocity info to MasterVelocity
memcpy(MasterVelocity, msgM2S.linearVelocity, 3 * sizeof(double));

//declaring slave force initially set to zero.
cVector3d input_force(0, 0, 0);

 ///
 // COMPUTE AND APPLY teleoperation control FORCES
 ///

cVector3d tempPos;

hapticDevice->getPosition(tempPos);
xs[0] = tempPos.x();
xs[1] = tempPos.y();
xs[2] = tempPos.z();

xsd[0] += 0.001 * MasterVelocity[0];
xsd[1] += 0.001 * MasterVelocity[1];
xsd[2] += 0.001 * MasterVelocity[2];

// PD controller for calculating force
double xs_err[3] = { xsd[0] - xs[0], xsd[1] - xs[1], xsd[2] - xs[2] }; //compute

slave force

// max force limited output to -1 to 2.
double abs_val = 2; // max 8
double weak_y_force = A * xs_err[1] - B * xs_err_prev[1] - C * fs_prev[1];
if (weak_y_force > abs_val) {

weak_y_force = abs_val;
}
if (weak_y_force < -abs_val) {

weak_y_force = -abs_val;
}

double weak_z_force = A * xs_err[2] - B * xs_err_prev[2] - C * fs_prev[2];
if (weak_z_force > abs_val) {

weak_z_force = abs_val;
}
if (weak_z_force < -abs_val) {

weak_z_force = -abs_val;
}
input_force.set(

0,
weak_y_force,
0

);

for (int i = 0; i < 3; ++i)
{

xs_err_prev[i] = xs_err[i];
fs_prev[i] = input_force(i);

}

///
// APPLY FORCE TO THE DEVICE AND ENSURE 1ms SAMPLING RATE
///

cVector3d tempForce(input_force);
if (tempForce.length() > 20.0)
{

tempForce = tempForce * 8.0 / tempForce.length();
}

std::cout << " input Force: x= " << tempForce(0) << ", y= " << tempForce(1) <<
", z=" << tempForce(2) << std::endl;

tool->setDeviceLocalForce(tempForce);
tool->applyToDevice();

});

});

//Start the networking thread
std::thread serverThread([&server]() {

server.run(PORT_NUMBER);
});

// Approach taken by the slave main.cpp is
// 1, Send Forces back to master device so haptic feedback to the master
// 2, (Done) Convert the received position/velocity data to become force and

apply to device

// temporarily adding variables to lamda list
std::thread inputThread([&server, &mainEventLoop](){

simulationRunning = true;
simulationFinished = false;

int send_packet_rate = 0;
//===

// Ken - for sending foce data. random values put in to not confuse with the

erroneous 0, 0,0 being printed on console
cVector3d read_force(0, 0, 0); //slave force

// this test function doesn't work either, unless without out getPosition() below.
cVector3d linearVelocity;
cVector3d testpos;

double cur_f_x = 0;
double cur_f_y = 0;
double cur_f_z = 0;

// Ken - Essentially HapticMaster's updateHaptics() functions with server project's

input transmission feature inserted into part of overall transmission.
while (simulationRunning)
{

///
// get force and apply deadband approach
///

 hapticDevice->getLinearVelocity(linearVelocity);

 hapticDevice->getPosition(testpos);

 hapticDevice->getForce(read_force);

 if (read_force(0) != 0 && read_force(1) != 0 && read_force(2) != 0 && cur_f_x !=
read_force(0) && cur_f_y != read_force(1) && cur_f_z != read_force(2)) {

 cur_f_x = read_force(0);
 cur_f_y = read_force(1);
 cur_f_z = read_force(2);

 }

 cVector3d F_debug(read_force);

 MasterForce[0] = -1 * F_debug.x();
 MasterForce[1] = -1 * F_debug.y();
 MasterForce[2] = -1 * F_debug.z();

 // Slave side: Perceptual deadband data reduction is applied
 DBForce->GetCurrentSample(MasterForce); // pass the current sample for DB

data reduction
 DBForce->ApplyZOHDeadband(MasterForce, &ForceTransmitFlag); // apply

DB data reduction

// Slave side: Perceptual deadband data reduction is applied
DBForce->GetCurrentSample(MasterForce); // pass the current sample for DB

data reduction
DBForce->ApplyZOHDeadband(MasterForce, &ForceTransmitFlag); // apply DB

data reduction

///
// Send Forces
///
hapticMessageS2M msgS2M;

for (int i = 0; i < 3; i++) {
msgS2M.force[i] = MasterForce[i];// modified by TDPA

}

#pragma region create message and send it

///
// create message to send
///

//Broadcast the input to all connected clients (is sent on the network thread)
Json::Value payload;
Json::Value S2Mpayload;

__int64 curtime;
QueryPerformanceCounter((LARGE_INTEGER*)& curtime);
msgS2M.timestamp = curtime;

if (ForceTransmitFlag) //deadband trigger
{

send_packet_rate++;
}
freqCounterHaptics.signal(1);

//index 0- timestamp
S2Mpayload["hapticMessageS2M"][0] = msgS2M.timestamp;
//index 1~3
for (int i = 0; i < 3; i++) {

S2Mpayload["hapticMessageS2M"][i + 1] = msgS2M.force[i];
}
//index 4~6
for (int i = 0; i < 3; i++) {

S2Mpayload["hapticMessageS2M"][i + 4] = msgS2M.torque[i];
}
S2Mpayload["hapticMessageS2M"][7] = msgS2M.gripperForce;
//index 8~10
for (int i = 0; i < 3; i++) {

S2Mpayload["hapticMessageS2M"][i + 8] = msgS2M.energy[i];
}
//index 11~13
for (int i = 0; i < 3; i++) {

S2Mpayload["hapticMessageS2M"][i + 11] = msgS2M.waveVariable[i];
}
//index 14~20
for (int i = 0; i < 7; i++) {

S2Mpayload["hapticMessageS2M"][i + 14] = msgS2M.MMTParameters[i];
}

server.broadcastMessage("data", S2Mpayload);

//==
==========

#pragma endregion

}

});

//==
=================

//Start the event loop for the main thread
asio::io_service::work work(mainEventLoop);
mainEventLoop.run();

// exit haptics thread
simulationFinished = true;

}

Function to calculate the gains (z domain gains) A, B, C from (s domain gains) K, Ke
Using Tustin's approximation

s domain transfer function : F = (K*error + Ke*error_dot)/(tau * s + 1)
 // with current arguments, the parameter results in A= 2619.05, B= 2142.86, and C=-0.52381.

where, K - Proportional Gain
Ke - Derivative Gain
tau - Low pass filter parameter
*/
void reCalcGains(double& K, double& Ke, double& A, double& B, double& C) {

double tau = 0.0016;
double T = 0.001;
A = (2 * Ke + K * T) / (2 * tau + 1 * T);
B = -1 * (-2 * Ke + K * T) / (2 * tau + 1 * T);
C = (-2 * tau + 1 * T) / (2 * tau + 1 * T);

}

/*
initialize parameters from the starting position of the device
*/
void deviceInit(double x, double y, double z, cGenericHapticDevicePtr device)
{

std::cout << "deviceInit() received! " << std::endl;

cVector3d pos;
device->getPosition(pos);
for (int i = 0; i < 3; ++i)
{

xs[i] = pos(i);
xsd[i] = pos(i);

}

double K = 1000, Ke = 5;

reCalcGains(K, Ke, A, B, C);
std::cout << " parameters: A= " << A << ", B= " << B << ", C=" << C << std::endl;

}

12.4 Signaling Code

/∗
∗ This p r o j e c t was i n s p i r e d by the Munge SDP sample example which can
∗ be found on the WebRTC webs i te . The copy r i gh t from that p r o j e c t can
∗ be seen below .
∗ Copyright (c) 2015 The WebRTC pro j e c t authors . Al l Rights Reserved .
∗ Use o f t h i s source code i s governed by a BSD−s t y l e l i c e n s e
∗ that can be found in the LICENSE f i l e in the root o f the source t r e e .
∗ Authors

Ken I i y o s h i
Mahrukh Taussee f
Ruth Gebremedhin

∗ Date
Sunday , May 10 , 2020

∗/

var isChannelReady = f a l s e ;
var i s I n i t i a t o r = f a l s e ;
var i s S t a r t e d = f a l s e ;
var room = ’ foo ’ ;

// ∗∗∗∗∗∗∗∗∗∗∗∗Begin Socket ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
var socket = io . connect () ;

i f (room !== ’ ’) {
socke t . emit (’ c r e a t e or jo in ’ , room) ; // sends to the s e r v e r
conso l e . l og (’ Attempted to c r ea t e or j o i n room ’ , room) ;

}

socke t . on (’ created ’ , f unc t i on (room) {
conso l e . l og (’ Created room ’ + room) ;
i s I n i t i a t o r = true ;

}) ;

socke t . on (’ f u l l ’ , f unc t i on (room) {
conso l e . l og (’Room ’ + room + ’ i s f u l l ’) ;

}) ;

socke t . on (’ j o in ’ , f unc t i on (room){
conso l e . l og (’ Another peer made a reque s t to j o i n room ’ + room) ;
conso l e . l og (’ This peer i s the i n i t i a t o r o f room ’ + room + ’ ! ’) ;
isChannelReady = true ;

}) ;

socke t . on (’ jo ined ’ , f unc t i on (room) {
conso l e . l og (’ j o i n ed : ’ + room) ;
isChannelReady = true ;

}) ;

socke t . on (’ log ’ , f unc t i on (array) {
conso l e . l og . apply (conso le , array) ;

}) ;

94

//

func t i on sendMessage (message) {
conso l e . l og (’ C l i en t sending message : ’ , message) ;
socke t . emit (’ message ’ , message) ;

}

// This c l i e n t r e c e i v e s a message
socke t . on (’ message ’ , f unc t i on (message) {

conso l e . l og (’ C l i en t r e c e i v ed message : ’ , message) ;
i f (message === ’ got user media ’) {

check_creatPeerConnectoin () ;
} e l s e i f (message . type === ’ o f f e r ’) {

i f (! i s I n i t i a t o r && ! i s S t a r t e d) {
check_creatPeerConnectoin () ;

createAnswerButton . d i s ab l ed = f a l s e ;
setAnswerButton . d i s ab l ed = f a l s e ;
c reateOf f e rButton . d i s ab l ed = true ;
se tOf fe rButton . d i s ab l ed = true ;

}
loca lPeerConnect ion . setRemoteDescr ipt ion
(new RTCSessionDescript ion (message)) ;

createAnswerButton . on c l i c k = createAnswer ;
setAnswerButton . on c l i c k = setAnswer ;

} e l s e i f (message . type === ’ answer ’ && i s S t a r t e d) {
loca lPeerConnect ion . setRemoteDescr ipt ion
(new RTCSessionDescript ion (message)) ;

} e l s e i f (message . type === ’ candidate ’ && i s S t a r t e d) {
var candidate = new RTCIceCandidate ({

sdpMLineIndex : message . l abe l ,
candidate : message . candidate

}) ;
l oca lPeerConnect ion . addIceCandidate (candidate) ;

}
e l s e i f (message === ’ bye ’ && i s S t a r t e d) {
hangup () ;

}
}) ;

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗End Socket ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// checks i f the s i g n a l i n g was s u c c e s s f u l and c r e a t e s the RTCPeerConnection
// ob j e c t i f i t was s u c c e s s f u l
f unc t i on check_creatPeerConnectoin () {

conso l e . l og(’>>>>>>> check_creatPeerConnectoin () ’ , i s S ta r t ed , loca lStream ,
isChannelReady) ;
i f (! i s S t a r t e d && typeo f loca lSt ream !== ’ undef ined ’ && isChannelReady) {

conso l e . l og(’>>>>>> cr ea t i n g peer connect ion ’) ;
c reatePeerConnect ion () ;
l oca lSt ream . getTracks () . forEach (t rack =>
loca lPeerConnect ion . addTrack (track , loca lSt ream)) ;

95

conso l e . l og (’ Adding Local Stream to peer connect ion ’) ;
i s S t a r t e d = true ;
con so l e . l og (’ i s I n i t i a t o r ’ , i s I n i t i a t o r) ;

i f (i s I n i t i a t o r) {
c reateOf f e rButton . on c l i c k = c r e a t eO f f e r ;
s e tOf fe rButton . on c l i c k = s e tO f f e r ;

}
}

}

12.5 HAV Network Documentation

The goal of this documentation is to instruct how to run the WebRTC-based localhost
simulation of the WG haptic handshake, as well as to provide a high-level understanding of
the how the simulation works. The documentation starts from the following page.

96

Localhost WG Haptic Handshake Simulation Documentation ver 2
Project: Group 04 (Design of a haptic wearable for Tele‐operation) - NYU Abu Dhabi
Version: 1 - Updated on 2020 May 08 at 17:28 by Ken Iiyoshi

Description

The goal of this documentation is to instruct how to run the WebRTC-based localhost simulation of the WG haptic handshake, as well as to provide a high-level
understanding of the how the simulation works.

The goal of this documentation is to instruct how to run the WebRTC-based localhost simulation of the WG haptic handshake, as well as to provide a
high-level understanding of the how the simulation works. This complements the low-level documentation that already exists for libraries that make up the
simulation.
For understanding/modifying the code further, the following skills would be useful:

Basics of socket programming for both JavaScript and C++ based section.
OOP in C++.
Understanding threads for haptic devices in C++.
Asynchronous programming for JavaScript code.
Basics of HTML, on how the content of the browser's graphical user interfaces (GUI) with JavaScript-based functionalities.
Basics of CSS, on how layout/color/formatting works on the GUI.

Aside from developing the haptodont application, our capstone focuses on creating a network that allows HAV communication between haptodont
systems. As a first step, I implemented a locally hosted HAV network simulation. Ideally, this should be done in one program. However, because
WebRTC is being used to simulate HAV network and because haptic data can only be accessed through a C++ based program, the simulation had to be
divided into three programs: C++ HapticSlave, HTML/CSS/JavaScript HAVnetSimulation, and C++ HapticMaster, which are shown as separate blue blocks
in Figure 1. The HTML/CSS/JavaScript browser communicates between simulated slave and master, including haptic data which is provided by the C++
programs that are interfaced to Novint Falcon haptic devices. The nature of haptic data, combined with AV data, are determined by AV metadata and TIM
during HAV handshaking phase, and by control data during operation phase.

Several existing projects and libraries are being merged to create a set of three programs. The browser consists of WebRTC and C++ WebSocket
Server Demo's client project. The client project consists of jQuery and simple-websocket. jQuery simplifies traditionally verbose JavaScript
expressions while simple-websocket is used to receive websocket data.

The C++ programs both consist of C++ WebSocket Server Demo's server project, Chai 3D, and Haptic Codec provided by Xiao Xu from TUM (shared only
within AIM Lab). The server projects consists of WebSocket++, Asio, and Jsoncpp. WebSocket++ allows data to be sent on WebSocket via C++, Asio aids
the networking process through ASynchronous Input/Outputs, and Jsoncpp allows creation and management of JSON objects in C++. Chai 3D is being
used to sense and actuate the Novint Falcon devices. Simplified version of Haptic Codec is being used to form haptic objects that is converted into
stringified JSON via Jsoncpp and WebSocket++, as well as formulate realtime statistics and processing of haptic data communication.

Most of the work during this J-term was put into enabling haptic data transmission between the simulated master's browser and C++ programs, which
are indicated red borders. As a next step, haptic data will be passed through WebRTC's RTCDataChannel to complete HAV operation, which is indicated
in blue arrows and text. Each project will be discussed in their own sections below.

Figure 1. Model of Localhost WG Haptic Handshake Simulation

Figure 1, as well as backup files for the entire project, can be accessed from this capstone team drive folder (view
only): https://drive.google.com/drive/folders/1BxGKWgv7EUzhzJoHQZNoPdE15y7R6_0O?usp=sharing

The current implementation can communicate haptic data within the simulated master. To run this implementation, run the three projects in the
following order. Note that this project was compiled in VS2015, so using any other version would require recompilation of the entire project.

set HapticSlave as a start up project.

Overview of this Documentation

Overview of Implemented HAV Network

Accessing and Running Files

1. HapticSlave: socket > Teleop_2Falcons_UDP_DBn > Slave > Haptic.sln

1 of 5

97

set HapticSlave as a start up project.
Not necessary for now, as haptic communication between the slave and browser is not implemented yet.
The console pop up here does not print any communication rates until haptic connection is established with master via the browser.

set server as a start up project.
A console should pop up and start printing packet communication rates once it detects the Novint Falcon device.

Notice that the parent folder and start up project for Haptic Master is different from HapticSlave. The context behind this will be discussed later.

The browser's interface is similar to that of WebRTC's Munge SDP sample program, which demonstrates the AV handshake implemented via WebRTC.
HAVnetSimulation added haptic features to the SDP Offer/Answer blocks, renaming it as Request/Response TIM. It also added a set of blocks for viewing
haptic data stream in raw form.

Currently, loading the browser immediately starts haptic data communication between HapticMaster. Very large set of data is displayed on the local node
column as well as on HapticMaster's console window, both of which usually must be stopped by halting communication from HapticMaster's side. This is to
prevent unresponsiveness due to need in printing large amount of data within the browser.
The goal within this system is to, after completing HAV handshake and clicking the start button, have the slave and master Novint Falcon devices move
together.
As HAVnetSimulation involves communication of control parameters and data for not only haptic, but also audial and visual data, the
description below will cover the key functions for all three media.

Audio, video, and haptic data source can all be manually selected before starting connections.

Although HAVnetSimulation can automatically begin HAV communication process, the process has been divided into input selection and
several on-screen buttons for the purpose of user debugging. The order of button press is shown in the annotated diagram of the buttons,
followed by explanation of key features for each button:

2. HapticMaster: socket > Teleop_2Falcons_UDP_DB > Master > Haptic.sln

3. HAVnetSimulation: socket > HAVnetSimulation.html.

Input selection

Buttons

2 of 5

98

Pressing the "Get media" button will activate the user's webcam, outputting video data on the browser. The browser will then highlight the
next button to press, which is "Create peer connection", as shown below. Note that the textbox under "Haptic Data" will show the error will
appear only if the haptic device is not connected to the localhost. Console logs are present.

GUI-wise, no change occurs. As with the first step though, console logs are present.

This will populate the "Request TIM" text box with the HSDPmediaDescription object. Console logs are present.

GUI-wise, no change occurs. As with the first three step though, console logs are present.

This will populate the "Respond TIM" text box with the HSDPmediaDescription object. Notice that the text box content is slightly different
from that of "Request TIM" on line 3. This difference is processed and processed programmatically by the time handshake starts. Console logs
are present.

This will activate the user's webcam on the simulated remote end, outputting video data on the browser. Console logs are present.

1. Get media

2. Create peer connection

3. Create offer

4. Set offer

5. Create answer

6. Set answer

3 of 5

99

Nothing happens at the moment, since as of now, HAV communication is programmed to start right after "Set answer" is pressed.

Disconnects and shutdown any communication.

One may want to know if a problem is caused by C++ or JavaScript. In this case, HapticSlave and HapticMaster can communicate through JavaScript
server simulation that is strictly for localhost (i.e. not extendable to multi-computer network simulation due to JavaScript browsers not supporting UDP).
To run the demo with this server, go to and run socket > JavaScript > js_server (open this folder in VS Code, and run main.js via its built-in terminal. i.e.
press Ctrl+F5 to do this). This should immediately begin the haptic communication. i.e. moving either of the falcon device will result in mirrored
movement on the other device. Notice that the haptic communication is robust to termination of js_server. i.e. the communication goes on as long as
js_server is rerun. During downtime, one of the device can be moved, while the other one is stationary. Note that the same phenomenon occurs when
terminating HapticMaster. However, terminating HapticSlave will irreversibly brake the connection. Also, UDP message from C++ devices seem to be
sent only when the falcon devices move.

HapticMaster was built by inserting the master side of the Haptic codec into C++ WebSocket Server Demo's server project. This was done in order to
utilize functionalities from both projects without creating any external symbolic errors (i.e. inserting the server project into the haptic codec introduced
these errors). As a result, the start up project for the Haptic solution that contains HapticMaster is not the HapticMaster Project, but actually the server
project which is located in socket > Teleop_2Falcons_UDP-DB > websocket-server-demo-master > server > server.vcxproj.

The main function for server.vcxproj is in server.cpp. The code is around 600 lines long, most of which is from a Haptic Codec and the remainder is the
server project from C++ WebSocket Server Demo. Most importantly Haptic Codec, in addition to the main function setting up a queue used for haptic
communication, spawns a thread for sending and receiving haptic packets through the queue. While the main function is around 100 few lines of code,
the thread is around 300 lines of code put under a function called updateHaptics() . The following subsection documents key features
of updateHaptics() function in more detail. Note that HapticMaster's code is still in the process of documentation and reorganization.

First, the function declares asio::io_service object as mainEventLoop and WebsocketServer object as server . They are used in most of
the functions that are invoked within the updateHaptics() function. One of these functions is serverThread(), which starts the networking thread on
a designated port number (8080 for now). The next function, inputThread() , starts reading and writing haptic data from\to the master haptic
device. Finally, the function starts the event loop for the main thread through asio::io_service::work

work() and mainEventLoop.run() function. The updateHaptics() function keeps running until the user terminates the main function through
any keypress.

This WebSocket++-based function wraps the Haptic Codec code responsible for sending and receiving haptic packets through the queue. Through this
wrapper, the C++ program can send haptic data to the browser, as opposed to the terminal-based JavaScript UDP server.

A set of sub-functions runs in the function's 200 lines long while loop during the simulation. The loop first reads from the master haptic device.
Then, it creates a message to be sent, pushing it into "send queues", preparing to send it through sender thread. The loop then checks "receive queues".
Finally, the received data is applied to the master device for actuation.

For now, the haptic codec packet named hapticMessageM2S is converted into Json:Value payload object so
that server.broadcastMessage("data", payload) function can stringify and send payload with Jsoncpp functions. This conversion was
hardcoded. The goal is to automate this conversion in order to accommodate various haptic devices.

Most of the features in HapticSlave are similar to that of HapticMaster. However, it sends haptic data as force, as opposed to velocity in HapticMaster.
Also, its message packet name is hapticMessageS2M , not hapticMessageM2S .

Note that HapticSlave and HapticMaster follows the structure of a 2 channel teleoperation system. This means that no additional force sensors are
equipped on both master and slave haptic devices. The master sends designed velocity and position to the slave. On the slave side, a PD controller
generates the control force fs_prev to drive the motion of slave. At the same time, the slave control force fs_prev is transmitted back to the
master and displayed to the user. So there is no environment force or user-inputted force. If the user input force or environment contact force is needed,
there needs to be additional force sensors on both sides and the teleoperation becomes a 4-channel system.

7. Start

8. Hang up

Program for Debugging

Key Features in HapticMaster

updateHaptics()

inputThread()

Key Features in HapticSlave

4 of 5

100

Based on the 2 channel teleoperation, hapticDevice->getForce() on the slave side returns the last control force fs_prev , which is the force
sent back to the master according to the deadband coder. The user inputted movement is the same as the motion read by
the hapticDevice->getPosition() and hapticDevice->getLinearVelocity() functions, since we assume that the user is tightly holding the
device.

hapticDevice->getPosition(tempPos) is used along with MasterVelocity for the PD controller in input_force.set() , which is sent to the
master, enabling the bidirectional communication without force sensors. This is why HpaticMaster side sends velocity and the HapticSlave sends force;
since that is necessary for a haptic device that can only actuate based on force data and measure position/velocity data.

HAVnetSimulation was built on top of HTML, CSS, and JavaScript files from WebRTC's Munge SDP Sample program by adding HTML and JavaScript code
from C++ WebSocket Server Demo's client project. The documentation aims to not only explain the key features of Munge SDP, but also those from
WebSocket Server Demo, and most importantly haptic-communication related code unique to HAVnetSimulation.

The code inside <head> tags assigns metadata, browser window title/icon, and addresses for fonts, CSS file, and JavaScript files.

The code inside <body> tags creates the on-screen features seen on the GUI, and makes additional JavaScript file importations. The features are title
text, drop-down boxes for selecting HAV sources, buttons for setting HAV WebRTC communication, buttons for initiating the handshake, text boxes for
displaying TIM and haptic data, and display boxes for video data. Each of these features are contained in <div> tags with corresponding ids. The CSS
file will refer to these ids for formatting and styling.

Notice that the HTML code interfaces JavaScript through its features on the browser screen. The CSS code simply decorates these features. This means
that in the context of HAVnetSimulation, HTML and CSS-based sections pertain only to the presentation aspect of it's HAV communication system.

From main.js, the browser first executes document.addEventListener('DOMContentLoaded' , init) . This simply means that it will run
the init() function once the browser loaded. The rest of main.js is written inside this function. The duration for running this function is measured
and outputted to console log accordingly. In fact, JavaScript console logs is used extensively, which complements the debugging process. Note that as
long as one follows procedure in the documentation, the console log will out put no error or warnings.

The const declarations in the beginning of the init() function connects the HTML-based features to JavaScript. Immediately after are assignments of
functions that run when the HTML-based features are interacted with. Then, more variables are declared to be used for WebRTC-based processes.

Multiple functions can occur simultaneously after one another due to asynchronous programming.

HAVnetSimulation receives haptic data from HapticMaster using its SocketWrapper class, an existing implementation from WebSocket Server Demo.
The browser first instantiates the SocketWrapper class named socket under a designated port
number, "ws://127.0.0.1:8080" . ws stands for WebSockets. Port 8080 is typically used for a personally hosted (localhost) web server. A function
from socket will then connect with HapticMaster. Only after this, another function can obtain haptic data from HapticMaster, stored into a variable
named hapticMsgFromMaster .

AV Data is obtained by WebRTC API, which is implemented separately from the haptic data-obtaining code.

The haptic data stored in hapticMsgFromMaster is sent through a channel through a custom-defined function IsendData() .

AV data is handled by WebRTC API.

Key Features in HAVnetSimulation

HTML & CSS-based browser Graphical User Interface (GUI)

JavaScript-based HAV data communication

Receiving HAV Data from HapticMaster

Sending HAV Data from the simulated Master to simulated Slave

5 of 5

101

12.6 Detailed CPM

252
0

252

7.0

252
0

252

0
0

0

0.1

0
0

0

117
17

134

3.5

134
34

168

0
40

40

1.4

0
0

40

0
20

20

1.2

20
20

40

0
40

40

1.5

0
0

40

117
28

145

3.2

117
0

145

117
7

124

3.3

124
21

145

89
28

117

3.1

89
0

117

61
28

89

2.4

61
0

89

40
28

68

2.3

40
0

68

117
7

124

3.4

124
21

145

40
49

89

2.2

89
28

117

40
21

61

2.1

40
0

61

0
20

20

1.3

20
20

40

0
220

7

1.1

33
33

40

217
21

238

5.2

217
0

238

182
35

217

4.3

182
0

217

168
21

189

4.2

168
0

189

145
42

168

4.1

145
0

168

238
14

252

6.4

238
0

252

40
14

54

6.1

40
0

54

40
35

75

5.1

182
142

217

54
14

78

6.2

54
0

78

182
14

196

6.3

182
0

196

Don’t	change	page	size:	O
n	latex,	the	long	im

age	is	split	into	tw
o	parts,	and	this	bottom

	part	is	cropped	out.	

102

252
0

252

7.0

252
0

252

0
0

0

0.1

0
0

0

117
17

134

3.5

134
34

168

0
40

40

1.4

0
0

40

0
20

20

1.2

20
20

40

0
40

40

1.5

0
0

40

117
28

145

3.2

117
0

145

117
7

124

3.3

124
21

145

89
28

117

3.1

89
0

117

61
28

89

2.4

61
0

89

40
28

68

2.3

40
0

68

117
7

124

3.4

124
21

145

40
49

89

2.2

89
28

117

40
21

61

2.1

40
0

61

0
20

20

1.3

20
20

40

0
220

7

1.1

33
33

40

217
21

238

5.2

217
0

238

182
35

217

4.3

182
0

217

168
21

189

4.2

168
0

189

145
42

168

4.1

145
0

168

238
14

252

6.4

238
0

252

40
14

54

6.1

40
0

54

40
35

75

5.1

182
142

217

54
14

78

6.2

54
0

78

182
14

196

6.3

182
0

196

Don’t	change	page	size:	O
n	latex,	the	long	im

age	is	split	into	tw
o	parts,	and	this	bottom

	part	is	cropped	out.	

103

252
0

252

7.0

252
0

252

0
0

0

0.1

0
0

0

117
17

134

3.5

134
34

168

0
40

40

1.4

0
0

40

0
20

20

1.2

20
20

40

0
40

40

1.5

0
0

40

117
28

145

3.2

117
0

145

117
7

124

3.3

124
21

145

89
28

117

3.1

89
0

117

61
28

89

2.4

61
0

89

40
28

68

2.3

40
0

68

117
7

124

3.4

124
21

145

40
49

89

2.2

89
28

117

40
21

61

2.1

40
0

61

0
20

20

1.3

20
20

40

0
220

7

1.1

33
33

40

217
21

238

5.2

217
0

238

182
35

217

4.3

182
0

217

168
21

189

4.2

168
0

189

145
42

168

4.1

145
0

168

238
14

252

6.4

238
0

252

40
14

54

6.1

40
0

54

40
35

75

5.1

182
142

217

54
14

78

6.2

54
0

78

182
14

196

6.3

182
0

196

Don’t	change	page	size:	O
n	latex,	the	long	im

age	is	split	into	tw
o	parts,	and	this	bottom

	part	is	cropped	out.	
Figure 25: Detailed Project Critical Path Method. The critical path here, in order, is 0.1,
1.5, 2.3, 2.4, 3.1, 3.4, 4.1, 4.2, 4.3, 5.2, 6.4, and 7.0. Note that the numbers are in days.

104

	Project Management
	Work Breakdown Structure (WBS)
	Design Structure Matrix (DSM)
	Simplified Critical Path Method (CPM)
	Gantt Chart
	Changes made to Project Management

	Problem Definition
	Problem Analysis
	Problem Clarification: Black-Box Modeling
	Problem Statement
	Design Constraints
	Technical Constraints
	Non-Technical Constraints

	Conceptualization
	Background Research
	Concept Generation: Morphological Chart
	Network
	Application

	Concept Selection: Pugh Charts
	Network
	Application

	Simulation and Experimentation
	Network
	Evaluation through WebRTC Browser
	Simulation through NS-3

	Application
	Hand tracking
	Feedback from Dental Community

	Final Design
	Initial Network Design
	Haptic Handshake Protocol and Operation Design
	Signaling Server

	Initial Application Design
	3D Oral Cavity Model
	Haptodont Application
	Hand Tracking
	Playback Integration

	Future Plan: Native WebRTC C++ integration
	Design Review

	Budget
	Implementation
	Network: On Localhost
	A WebRTC-based HAV Communication Model
	Haptic Handshake Protocol: Haptic Control State
	Haptic Handshake Protocol: Request/Response/ACK Messages
	Haptic Handshake Protocol: Browser Interface

	Issues faced during implementation
	Application: Hand Tracking and Finger Support
	Application: Deformable Oral Cavity Model

	Changes made during implementation
	 Network: Signaling Server-Client Communication Architecture
	Application: Finger-Support

	Initial Results
	Video Demonstration of Completed Design

	Contribution to IEEE 1918.1.1 Working Group (WG)
	Impact of COVID-19 on the Capstone Design Project
	Network
	Network Simulation

	Application
	Integration of Haptodont End-Application and Communication Network
	Application Testing

	Ethics
	Design Evaluation
	Criteria for Design Evaluation
	Results and Test Data
	Network

	Discussion of Test Data
	Network

	Appendix
	Browser Code (WebRTC and Websockets)
	C++ Master Code
	C++ Slave Code
	Signaling Code
	HAV Network Documentation
	Detailed CPM

